On the structure of digraphs of polynomial transformations over finite commutative rings with unity
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes structural characteristics of the digraph of an arbitrary polynomial transformation of a finite commutative ring with unity. A classification of vertices of the digraph is proposed: cyclic elements, initial elements, and branch points are described. Quantitative results on such objects and heights of vertices are given. Besides, polynomial transformations are shown to have cycles whose lengths coincide with the lengths of cycles of the induced polynomial transformation over the field $R/\Re$, where $\Re$ is the radical of the finite commutative local ring $R$.
Keywords: digraph, polynomial transformation, finite commutative ring.
@article{DM_2017_29_3_a0,
     author = {V. E. Viktorenkov},
     title = {On the structure of digraphs of polynomial transformations over finite commutative rings with unity},
     journal = {Diskretnaya Matematika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a0/}
}
TY  - JOUR
AU  - V. E. Viktorenkov
TI  - On the structure of digraphs of polynomial transformations over finite commutative rings with unity
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 3
EP  - 23
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a0/
LA  - ru
ID  - DM_2017_29_3_a0
ER  - 
%0 Journal Article
%A V. E. Viktorenkov
%T On the structure of digraphs of polynomial transformations over finite commutative rings with unity
%J Diskretnaya Matematika
%D 2017
%P 3-23
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a0/
%G ru
%F DM_2017_29_3_a0
V. E. Viktorenkov. On the structure of digraphs of polynomial transformations over finite commutative rings with unity. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a0/