Local limit theorems for one class of distributions in probabilistic combinatorics
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 109-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a function $f(z)$ be decomposed into a power series with nonnegative coefficients which converges in a circle of positive radius $R.$ Let the distribution of the random variable $\xi_n$, $n\in\{1,2,\ldots\}$, be defined by the formula $$P\{\xi_n=N\}=\frac{\mathrm{coeff}_{z^n}\left(\frac{\left(f(z)\right)^N}{N!}\right)}{\mathrm{coeff}_{z^n}\left(\exp(f(z))\right)},\,N=0,1,\ldots$$ for some $|z|$ (if the denominator is positive). Examples of appearance of such distributions in probabilistic combinatorics are given. Local theorems on asymptotical normality for distributions of $\xi_n$ are proved in two cases: a) if $ f(z) = (1-z)^{-\la}, \, \la = \mathrm {const} \in(0,1]$ for $|z| 1$, and b) if all positive coefficients of expansion $ f (z) $ in a power series are equal to 1 and the set $A$ of their numbers has the form $$ A = \{m^r \, | \, m \in \mathbb{N} \}, \, \, r = \mathrm {const},\; r \in \{2,3,\ldots\}.$$ A hypothetical general local limit normal theorem for random variables $ \xi_n$ is stated. Some examples of validity of the statement of this theorem are given.
Keywords: power series distributions, local asymptotical normality.
@article{DM_2017_29_2_a8,
     author = {A. N. Timashev},
     title = {Local limit theorems for one class of distributions in probabilistic combinatorics},
     journal = {Diskretnaya Matematika},
     pages = {109--132},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Local limit theorems for one class of distributions in probabilistic combinatorics
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 109
EP  - 132
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/
LA  - ru
ID  - DM_2017_29_2_a8
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Local limit theorems for one class of distributions in probabilistic combinatorics
%J Diskretnaya Matematika
%D 2017
%P 109-132
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/
%G ru
%F DM_2017_29_2_a8
A. N. Timashev. Local limit theorems for one class of distributions in probabilistic combinatorics. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 109-132. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/

[1] Goncharov V., “On the field of combinatorial analysis”, Amer. Math. Soc. Transl., 19:2 (1962), 1–46 | MR | Zbl | Zbl

[2] Kolchin V. F., Random mappings, Optimization Software Inc. Publications Division, New York, 1986, 207 pp. | MR | MR | Zbl

[3] Kolchin V. F., Random Graphs, Cambridge University Press, 1998, 268 pp. | MR | MR

[4] Volynets L.M., “Otsenka skorosti skhodimosti k predelnomu raspredeleniyu dlya chisla tsiklov v sluchainoi podstanovke”, Veroyatnostnye zadachi diksretnoi matematiki, MIEM, M., 1987, 40-46 | MR

[5] Timashov A. N., “On asymptotic expansions for the distributions of the number of cycles in a random permutation”, Discrete Math. Appl., 13:4 (2003), 417–427 | DOI | DOI | MR | Zbl

[6] Yakimiv A. L., Probabilistic applications of Tauberian theorems, Modern Probability and Statistics, VSP, Leiden, 2005, 225 pp. | MR | Zbl

[7] A. L. Yakymiv, “On the number of $A$-permutations”, Math. USSR-Sb., 66:1 (1990), 301–311 | DOI | MR | Zbl

[8] Yakymiv A. L., “Substitutions with cycle lengths from a fixed set”, Discrete Math. Appl., 1:1 (1991), 105–116 | DOI | MR | Zbl

[9] Yakymiv A.L., “O sluchainykh podstanovkakh s dlinami tsiklov iz zadannogo mnozhestva”, Veroyatnostnye protsessy i ikh prilozheniya, Mezhvuz. sb., MIEM, M., 1991, 24–27

[10] Yakymiv A. L., “Some classes of substitutions with cycle lengths from a given set”, Discrete Math. Appl., 3:2 (1993), 213–220 | DOI | MR | Zbl

[11] Pavlov A. I., “On the number of substitutions with cycle lengths from a given set”, Discrete Math. Appl., 2:4 (1992), 445–459 | DOI | MR | Zbl

[12] Kolchin V. F., “On the number of permutations with constraints on their cycle lengths”, Discrete Math. Appl., 1:2 (1991), 179–193 | DOI | MR | Zbl

[13] Sachkov V.N., Probabilistic Methods in Combinatorial Analysis, Cambridge Univ. Press, Cambridge, 1997, 246 pp. | MR | MR | Zbl

[14] Ivchenko G. I., Medvedev Yu. I., “Asymptotic representations of finite differences of a power function at an arbitrary point”, Theory Probab. Appl., 10:1 (1965), 139–144 | DOI | MR | Zbl

[15] Ivchenko G.I., Medvedev Yu.I., Diskretnye raspredeleniya. Veroyatnostno-statisticheskii spravochnik. Mnogomernye raspredeleniya, Lenand, M., 2016

[16] Harper L., “Stirling behavior is asymptotically normal”, Ann. Math. Stat., 38:2 (1967), 410–414 | DOI | MR | Zbl

[17] Timashev A.N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izd. dom «Akademiya», M., 2011

[18] Arratia R., Tavare S., “Independent process approximations for random combinatorial structures”, Adv. in Math., 104 (1994), 90–154 | DOI | MR | Zbl

[19] Renyi A., “Some remarks on the theory of trees”, Magyar. tud. Akad. Mat. Kutató Int. közl., 4:7 (1959), 73–83 | MR

[20] Timashev A.N., Additivnye zadachi s ogranicheniyami na znacheniya slagaemykh, Izd. dom «Akademiya», M., 2015

[21] Erdös P., Kac M., “The Gaussian law of errors in the theory of additive number theoretic functions”, Amer. J. Math., 62 (1940), 738–742 | DOI | MR

[22] Timashev A.N., Obobschennaya skhema razmescheniya v zadachakh veroyatnostnoi kombinatoriki, Izd. dom «Akademiya», M., 2011

[23] Harris B., “Probability distributions related to random mappings”, Ann. Math. Stat., 31:4 (1960), 1045–1062 | DOI | MR | Zbl

[24] Chandrasekharan K., Arithmetical functions, Springer-Verlag, 1970, 231 pp. | MR | MR | Zbl

[25] Timashev A.N., Raspredeleniya tipa stepennogo ryada i obobschennaya skhema razmescheniya, Izd. dom «Akademiya», M., 2016