Local limit theorems for one class of distributions in probabilistic combinatorics
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 109-132

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a function $f(z)$ be decomposed into a power series with nonnegative coefficients which converges in a circle of positive radius $R.$ Let the distribution of the random variable $\xi_n$, $n\in\{1,2,\ldots\}$, be defined by the formula $$P\{\xi_n=N\}=\frac{\mathrm{coeff}_{z^n}\left(\frac{\left(f(z)\right)^N}{N!}\right)}{\mathrm{coeff}_{z^n}\left(\exp(f(z))\right)},\,N=0,1,\ldots$$ for some $|z|$ (if the denominator is positive). Examples of appearance of such distributions in probabilistic combinatorics are given. Local theorems on asymptotical normality for distributions of $\xi_n$ are proved in two cases: a) if $ f(z) = (1-z)^{-\la}, \, \la = \mathrm {const} \in(0,1]$ for $|z| 1$, and b) if all positive coefficients of expansion $ f (z) $ in a power series are equal to 1 and the set $A$ of their numbers has the form $$ A = \{m^r \, | \, m \in \mathbb{N} \}, \, \, r = \mathrm {const},\; r \in \{2,3,\ldots\}.$$ A hypothetical general local limit normal theorem for random variables $ \xi_n$ is stated. Some examples of validity of the statement of this theorem are given.
Keywords: power series distributions, local asymptotical normality.
@article{DM_2017_29_2_a8,
     author = {A. N. Timashev},
     title = {Local limit theorems for one class of distributions in probabilistic combinatorics},
     journal = {Diskretnaya Matematika},
     pages = {109--132},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Local limit theorems for one class of distributions in probabilistic combinatorics
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 109
EP  - 132
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/
LA  - ru
ID  - DM_2017_29_2_a8
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Local limit theorems for one class of distributions in probabilistic combinatorics
%J Diskretnaya Matematika
%D 2017
%P 109-132
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/
%G ru
%F DM_2017_29_2_a8
A. N. Timashev. Local limit theorems for one class of distributions in probabilistic combinatorics. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 109-132. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a8/