Biorthogonal wavelet codes with prescribed code distance
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a scheme of construction of 2-circulant codes with given code distance on the basis of biorthogonal filters with the property of perfect reconstruction over a finite filed of odd characteristic. The corresponding algorithm for constructing biorthogonal filters utilizes the Euclidean algorithm for finding the gcd of polynomials.
Keywords: wavelet codes, error-correcting coding, code distance.
@article{DM_2017_29_2_a7,
     author = {A. A. Soloviev and D. V. Chernikov},
     title = {Biorthogonal wavelet codes with prescribed code distance},
     journal = {Diskretnaya Matematika},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a7/}
}
TY  - JOUR
AU  - A. A. Soloviev
AU  - D. V. Chernikov
TI  - Biorthogonal wavelet codes with prescribed code distance
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 96
EP  - 108
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a7/
LA  - ru
ID  - DM_2017_29_2_a7
ER  - 
%0 Journal Article
%A A. A. Soloviev
%A D. V. Chernikov
%T Biorthogonal wavelet codes with prescribed code distance
%J Diskretnaya Matematika
%D 2017
%P 96-108
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a7/
%G ru
%F DM_2017_29_2_a7
A. A. Soloviev; D. V. Chernikov. Biorthogonal wavelet codes with prescribed code distance. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 96-108. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a7/

[1] F. Fekri, S. W. McLaughlin, R. M. Mersereau, R. W. Schafer, “Double circulant self-dual codes using finite-field wavelet transforms”, Lect. Notes Comput. Sci., 1719, 1999, 355–363 | DOI | MR

[2] F. Fekri, S. W. McLaughlin, R. M. Mersereau, R. W. Schafer, “Error control coding using finite-field wavelet transforms”, Center for Signal Image Processing, Georgia Inst. Technol., Atlanta, 1999, 1–13

[3] G. Caire, R.L. Grossman, H.V. Poor, “Wavelet transforms associated with finite cyclic groups”, IEEE Trans. Inf. Theory, 39 (1993), 1157–1166 | DOI | MR | Zbl

[4] F. Fekri, R. M. Mersereau, R. W. Schafer, “Theory of wavelet transform over finite fields”, IEEE Trans. Inf. Theory, 48 (2002), 2964–2979 | DOI | MR | Zbl

[5] Malla S., Veivlety v obrabotke signalov, per. s angl., Mir, Moskva, 2005, 671 pp.

[6] F. Fekri, R. M. Mersereau, R. W. Schafer, “Theory of paraunitary filter banks over fields of characteristic two”, IEEE Trans. Inf. Theory, 48 (2002), 2964–2979. | DOI | MR | Zbl

[7] S.M. Phoong, P.P. Vaidyanathan, “Paraunitary Filter Banks Over Finite Fields”, IEEE Trans. Signal Proc., 45 (1997), 1443–1457 | DOI | Zbl

[8] Chernikov D.B, “Pomekhoustoichivoe kodirovanie s ispolzovaniem biortogonalnykh naborov filtrov”, Sib. elektr. matem. izv., 12 (2015), 704–713 | Zbl

[9] I. Doubechies, W. Sweldens, “Factoring wavelet transforms into lifting steps”, J. Fourier Anal. Appl., 4:3 (1998), 247–269 | DOI | MR

[10] Solovev A.A., Chernikov D.V., “Biortogonalnyi veivlet-kod v polyakh kharakteristiki dva”, Chelyab. fiz.-matem. zhurnal, 2:1 (2017), 66–79

[11] Welch L., Berlekamp T.R., “Error correction for algebrail block codes”, U.S. Patent 4, 633, 470:Sep. 27 (1983)

[12] Shiozaki A., “Decoding of redundant residue polynomial codes using Euclid's algorithm”, IEEE Trans. Inf. Theory, 34:5 (1988), 1351–1354 | DOI | MR

[13] Gao S., “A new algorithm for decoding Reed–Solomon codes”, Comm., Inf. Network Secur., 712 (2003), 55–68 | DOI | Zbl

[14] Fedorenko S.V., “Prostoi algoritm dekodirovaniya algebraicheskikh kodov”, Inf.-upravl. sistemy, 3 (2008), 23–27

[15] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.; MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes, Parts I, II, North-Holland, Amsterdam, 1977 | MR | Zbl