Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_1_a8, author = {A. V. Cheremushkin}, title = {Estimating the level of affinity of a quadratic form}, journal = {Diskretnaya Matematika}, pages = {114--125}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a8/} }
A. V. Cheremushkin. Estimating the level of affinity of a quadratic form. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 114-125. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a8/
[1] Dixon L. E., Linear groups with an expositions of the Galois field theory, B. J. Teubner, Leipzig, 1901, 312 pp.
[2] Dieudonné J., La géométrie des groupes classiques, Springer-Verlag, Berlin, 1955 | MR | MR
[3] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes, v. I, II, North-Holland, Amsterdam, 1977 | MR | Zbl
[4] Ryazanov B. V., Checheta S. I., “On the approximation of a random Boolean function by the set of quadratic forms”, Discrete Math. Appl., 5:5 (1995), 473–489 | DOI | MR | Zbl
[5] Buryakov M. L., “Asymptotic bounds for the affinity level for almost all Boolean functions”, Discrete Math. Appl., 18:5 (2008), 545–551 | DOI | DOI | MR | MR | Zbl