Linearly realizable automata
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 59-79

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of “linearly realizable” automata, i.e. automata that allow state encodings that lead to implementations with linear Boolean operators. We formulate the criterion of linear realizability and obtain upper and lower bounds on the number of linearly realizable automata.
Keywords: automata theory, automata, semiautomata, transition systems, permutation, substitution function, assignment, state encoding, complexity.
@article{DM_2017_29_1_a5,
     author = {S. B. Rodin},
     title = {Linearly realizable automata},
     journal = {Diskretnaya Matematika},
     pages = {59--79},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a5/}
}
TY  - JOUR
AU  - S. B. Rodin
TI  - Linearly realizable automata
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 59
EP  - 79
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a5/
LA  - ru
ID  - DM_2017_29_1_a5
ER  - 
%0 Journal Article
%A S. B. Rodin
%T Linearly realizable automata
%J Diskretnaya Matematika
%D 2017
%P 59-79
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a5/
%G ru
%F DM_2017_29_1_a5
S. B. Rodin. Linearly realizable automata. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 59-79. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a5/