On periodic properties of polylinear shift registers
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 27-50

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the author's studies in [Decomp], [2-LSR], [Using] on synthesis of generators of pseudorandom sequences on the basis of polylinear shift registers. The paper [NechMikh] puts forward a method of the study of periodic properties of such automata. In the present paper, this method is used for the study of the cyclic type of a polylinear shift register with irreducible characteristic polynomials.
Keywords: $k$-linear shift register, $k$-linear recurrent sequence, cyclic type.
@article{DM_2017_29_1_a3,
     author = {O. A. Kozlitin},
     title = {On periodic properties of polylinear shift registers},
     journal = {Diskretnaya Matematika},
     pages = {27--50},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - On periodic properties of polylinear shift registers
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 27
EP  - 50
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/
LA  - ru
ID  - DM_2017_29_1_a3
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T On periodic properties of polylinear shift registers
%J Diskretnaya Matematika
%D 2017
%P 27-50
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/
%G ru
%F DM_2017_29_1_a3
O. A. Kozlitin. On periodic properties of polylinear shift registers. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 27-50. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/