On periodic properties of polylinear shift registers
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 27-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the author's studies in [Decomp], [2-LSR], [Using] on synthesis of generators of pseudorandom sequences on the basis of polylinear shift registers. The paper [NechMikh] puts forward a method of the study of periodic properties of such automata. In the present paper, this method is used for the study of the cyclic type of a polylinear shift register with irreducible characteristic polynomials.
Keywords: $k$-linear shift register, $k$-linear recurrent sequence, cyclic type.
@article{DM_2017_29_1_a3,
     author = {O. A. Kozlitin},
     title = {On periodic properties of polylinear shift registers},
     journal = {Diskretnaya Matematika},
     pages = {27--50},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - On periodic properties of polylinear shift registers
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 27
EP  - 50
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/
LA  - ru
ID  - DM_2017_29_1_a3
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T On periodic properties of polylinear shift registers
%J Diskretnaya Matematika
%D 2017
%P 27-50
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/
%G ru
%F DM_2017_29_1_a3
O. A. Kozlitin. On periodic properties of polylinear shift registers. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 27-50. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a3/

[1] Van der Varden B. L., Algebra, Nauka, M., 1979

[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Lan, SPb–Krasnodar–M., 2015

[3] Elizarov V. P., Konechnye koltsa, Gelios-ARV, M., 2006

[4] Kozlitin O. A., “Parallelnaya dekompozitsiya neavtonomnykh 2-lineinykh registrov sdviga”, Matematicheskie voprosy kriptografii, 2:3 (2011), 5–29

[5] Kozlitin O. A., “2-lineinyi registr sdviga nad koltsom Galua chetnoi kharakteristiki”, Matematicheskie voprosy kriptografii, 3:2 (2012), 27–61

[6] Kozlitin O. A., “Ispolzovanie 2-lineinogo registra sdviga dlya vyrabotki psevdosluchainykh posledovatelnostei”, Matematicheskie voprosy kriptografii, 5:1 (2014), 39–72

[7] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | Zbl

[8] Mikhailov D. A., “Unitarnye polilineinye registry sdviga i ikh periody”, Diskretnaya matematika, 14:1 (2002), 30–59 | DOI

[9] Mikhalev A. V., Nechaev A. A., “Tsiklovye tipy semeistv polilineinykh rekurrent i datchiki psevdosluchainykh chisel”, Matematicheskie voprosy kriptografii, 5:1 (2014), 95–125

[10] Nechaev A. A., “Mnogomernye registry sdviga i slozhnost multiposledovatelnostei”, Trudy po diskretnoi matematike, 6 (2003), 150–165

[11] Faith C., Algebra. Rings, Modules and Categories, Grundlehren der mathematischen Wissenschaften, 190, Springer-Verlag, Berlin–Heidelberg, 1973, 568 pp. ; Feis K., Algebra: koltsa, moduli i kategorii, Mir, M., 1977 | MR | Zbl | MR

[12] Fomichev V. M., Diskretnaya matematika i kriptologiya, Dialog-MIFI, M., 2003

[13] Kurakin V. L., Kuzmin A. S., Markov V. T., Mikhalev A. V., Nechaev A. A., “Linear codes and polylinear recurrences over finite rings and modules (A survey)”, Lect. Notes Comput. Sci, 1719, Springer, Heidelberg, 1999, 363–391 | MR

[14] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl