Limit theorem for the size of an image of subset under compositions of random mappings
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{X_N}$ be a set consisting of $N$ elements and $F_1,F_2,\ldots$ be a sequence of random independent equiprobable mappings $\mathcal{X_N}\to\mathcal{X_N}$. For a subset $S_0\subset \mathcal{X_N}$, $|S_0|=n$, we consider a sequence of its images $S_t=F_t(\ldots F_2(F_1(S_0))\ldots)$, $t=1,2\ldots$ The conditions on $n$, $t$, $N\to\infty$ under which the distributions of image sizes $|S_t|$ are asymptotically connected with the standard normal distribution are presented.
Keywords: random equiprobable mappings, compositions of random mappings, asymptotic normality.
@article{DM_2017_29_1_a2,
     author = {A. M. Zubkov and A. A. Serov},
     title = {Limit theorem for the size of an image of subset under compositions of random mappings},
     journal = {Diskretnaya Matematika},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - Limit theorem for the size of an image of subset under compositions of random mappings
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 17
EP  - 26
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a2/
LA  - ru
ID  - DM_2017_29_1_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T Limit theorem for the size of an image of subset under compositions of random mappings
%J Diskretnaya Matematika
%D 2017
%P 17-26
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a2/
%G ru
%F DM_2017_29_1_a2
A. M. Zubkov; A. A. Serov. Limit theorem for the size of an image of subset under compositions of random mappings. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a2/

[1] Bernshtein S. N., Teoriya veroyatnostei, Gos. izd-vo, M.–L., 1927, 364 pp.

[2] Harris B., “Probability distributions related to random mappings”, Ann. Math. Statist., 31:2 (1960), 1045–1062 | DOI | MR | Zbl

[3] Hellman M. E., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inf. Theory, 1980, 401–406 | DOI | MR | Zbl

[4] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp. ; Kolchin V. F., Random mappings, Optimization Software Inc. Publications Division, New York, 1986, 207 pp. | MR | MR | Zbl

[5] Flajolet P., Odlyzko A. M., “Random mapping statistics”, Eurocrypt'89, Lect. Notes Comput. Sci., 434, 1990, 329–354 | DOI | MR | Zbl

[6] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, Lect. Notes Comput. Sci., 2729, 2003, 617–630 | DOI | MR | Zbl

[7] Hong J., Ma D., “Success probability of the Hellman trade-off”, Inf. Process. Lett., 109:7 (2009), 347–351 | DOI | MR | Zbl

[8] Hong J., Moon S., “A comparison of cryptanalytic tradeoff algorithms”, J. Cryptology, 26 (2013), 559–637 | DOI | MR | Zbl

[9] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108

[10] Zubkov A. M., Serov A. A., “Sovokupnost obrazov podmnozhestva konechnogo mnozhestva pri iteratsiyakh sluchainykh otobrazhenii”, Diskretnaya matematika, 26:4 (2014), 43–50 ; Zubkov A. M., Serov A. A., “Images of subset of finite set under iterations of random mappings”, Discrete Math. Appl., 25:3 (2015), 179–185 | DOI | DOI | MR | Zbl

[11] Serov A. A., “Obrazy konechnogo mnozhestva pri iteratsiyakh dvukh sluchainykh zavisimykh otobrazhenii”, Diskretnaya matematika, 27:4 (2015), 133–140 ; Serov A. A., “Images of a finite set under iterations of two random dependent mappings”, Discrete Math. Appl., 26:3 (2016), 175–181 | DOI | MR | DOI | MR | Zbl