On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 122-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with subsets $I$ of the residue group ${Z_d}$ in which the difference of any two elements is not relatively prime to $d$. The class of such subsets is denoted by $U\left( d \right)$, the class of sets from $U\left( d \right)$ of cardinality $r$ is denoted by $U\left( {d,\;r} \right)$. The present paper gives formulas for evaluation or estimation of $\left| {U\left( d \right)} \right|$ and $\left| {U\left( {d,\;r} \right)} \right|$.
Keywords: residue ring, nonunit differences, enumerative combinatorics.
@article{DM_2016_28_4_a9,
     author = {P. V. Roldugin},
     title = {On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible},
     journal = {Diskretnaya Matematika},
     pages = {122--138},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/}
}
TY  - JOUR
AU  - P. V. Roldugin
TI  - On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 122
EP  - 138
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/
LA  - ru
ID  - DM_2016_28_4_a9
ER  - 
%0 Journal Article
%A P. V. Roldugin
%T On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible
%J Diskretnaya Matematika
%D 2016
%P 122-138
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/
%G ru
%F DM_2016_28_4_a9
P. V. Roldugin. On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 122-138. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/

[1] Prachar K., Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 ; Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp. | MR | Zbl | MR

[2] Roldugin P. V., “O razmerakh podmnozhestv gruppy vychetov s neobratimymi raznostyami elementov”, Diskretnaya matematika, 28:3 (2016), 111–125 | DOI

[3] Hall M., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.–Toronto, Ont.–London, 1967, x+310 pp. | MR | MR | Zbl

[4] Cormen T. H., Leiserson C. E., Rivest R. L., Introduction to Algorithms, MIT Press and McGraw-Hill, 1990 | MR | Zbl

[5] Riordan J., Combinatorial Identities, Wiley, New York, 1968 | MR | MR | Zbl

[6] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp. | MR | MR | Zbl