On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 122-138
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is concerned with subsets $I$ of the residue group ${Z_d}$ in which the difference of any two elements is not relatively prime to $d$. The class of such subsets is denoted by $U\left( d \right)$, the class of sets from $U\left( d \right)$ of cardinality $r$ is denoted by $U\left( {d,\;r} \right)$. The present paper gives formulas for evaluation or estimation of $\left| {U\left( d \right)} \right|$ and $\left| {U\left( {d,\;r} \right)} \right|$.
Keywords:
residue ring, nonunit differences, enumerative combinatorics.
@article{DM_2016_28_4_a9,
author = {P. V. Roldugin},
title = {On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible},
journal = {Diskretnaya Matematika},
pages = {122--138},
year = {2016},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/}
}
TY - JOUR AU - P. V. Roldugin TI - On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible JO - Diskretnaya Matematika PY - 2016 SP - 122 EP - 138 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/ LA - ru ID - DM_2016_28_4_a9 ER -
P. V. Roldugin. On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 122-138. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a9/
[1] Prachar K., Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 ; Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp. | MR | Zbl | MR
[2] Roldugin P. V., “O razmerakh podmnozhestv gruppy vychetov s neobratimymi raznostyami elementov”, Diskretnaya matematika, 28:3 (2016), 111–125 | DOI
[3] Hall M., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.–Toronto, Ont.–London, 1967, x+310 pp. | MR | MR | Zbl
[4] Cormen T. H., Leiserson C. E., Rivest R. L., Introduction to Algorithms, MIT Press and McGraw-Hill, 1990 | MR | Zbl
[5] Riordan J., Combinatorial Identities, Wiley, New York, 1968 | MR | MR | Zbl
[6] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp. | MR | MR | Zbl