Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_4_a8, author = {B. A. Pogorelov and M. A. Pudovkina}, title = {On groups containing the additive group of the residue ring or the vector space}, journal = {Diskretnaya Matematika}, pages = {100--121}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/} }
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - On groups containing the additive group of the residue ring or the vector space JO - Diskretnaya Matematika PY - 2016 SP - 100 EP - 121 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/ LA - ru ID - DM_2016_28_4_a8 ER -
B. A. Pogorelov; M. A. Pudovkina. On groups containing the additive group of the residue ring or the vector space. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 100-121. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/
[1] Pogorelov B. A., Osnovy teorii grupp podstanovok, v. 1, Obschie voprosy, M., 1986, 316 pp.
[2] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, New York, 1996, 346 pp. | MR | Zbl
[3] Pogorelov B. A., Pudovkina M. A., “Nadgruppy additivnykh regulyarnykh grupp poryadka $2^n$ koltsa vychetov i vektornogo prostranstva”, Diskretnaya matematika, 27:3 (2015), 74–94 ; Pogorelov B. A., Pudovkina M. A., “Overgroups of order $2^n$ additive regular groups of a residue ring and of a vector space”, Discrete Math. Appl., 26:4 (2016), 239–254 | DOI | MR | DOI | MR | Zbl
[4] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye po podgruppam i ikh kombinatorno-gruppovye svoistva”, Diskretnaya matematika, 27:4 (2015), 94–119 ; Pogorelov B. A., Pudovkina M. A., “Orbital derivatives over subgroups and their combinatorial and group-theoretic properties”, Discrete Math. Appl., 26:5 (2016), 279–298 | DOI | MR | DOI | MR | Zbl
[5] Pogorelov B. A., Pudovkina M. A., “O rasstoyaniyakh ot podstanovok do imprimitivnykh grupp pri fiksirovannoi sisteme imprimitivnosti”, Diskretnaya matematika, 25:3 (2013), 78–95 ; Pogorelov B. A., Pudovkina M. A., “On the distance from permutations to imprimitive groups for a fixed system of imprimitivity”, Discrete Math. Appl., 24:2 (2014), 95–108 | DOI | MR | DOI | Zbl
[6] Diskretnaya matematika. Entsiklopediya, Nauchnoe izdatelstvo “Bolshaya Rossiiskaya entsiklopediya”, M., 2004
[7] Glukhov M. M., Zubov A. Yu., “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Matematicheskie voprosy kibernetiki, 1999, no. 8, 5–32 | MR | Zbl
[8] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, SPb., 2011, 400 pp.
[9] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^{m}$-tsikl”, Algebra i logika, 19:2 (1980), 236–247 | MR
[10] Elizarov V. P., Konechnye koltsa, Gelios ARV, M., 2006, 304 pp.