On groups containing the additive group of the residue ring or the vector space
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 100-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Groups which are most frequently used as key addition groups in iterative block ciphers include the regular permutation representation $V_n^ + $ of the group of vector key addition, the regular permutation representation $\mathbb{Z}_{{2^n}}^ + $ of the additive group of the residue ring, and the regular permutation representation $\mathbb{Z}_{{2^n} + 1}^ \odot $ of the multiplicative group of a prime field (in the case where ${2^n} + 1$ is a prime number). In this work we consider the extension of the group ${G_n}$ generated by $V_n^ + $ and $\mathbb{Z}_{{2^n}}^ + $ by means of transformations and groups which naturally arise in cryptographic applications. Examples of such transformations and groups are the groups $\mathbb{Z}_{{2^d}}^ + \times V_{n - d}^ + $ and $V_{n - d}^ + \times \mathbb{Z}_{{2^d}}^ + $ and pseudoinversion over the field $GF({2^n})$ or over the Galois ring $GR({2^{md}}{,2^m})$.
Keywords: key addition group, additive regular group, wreath product of permutation groups, multiplicative group of the residue ring, Galois ring.
@article{DM_2016_28_4_a8,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On groups containing the additive group of the residue ring or the vector space},
     journal = {Diskretnaya Matematika},
     pages = {100--121},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On groups containing the additive group of the residue ring or the vector space
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 100
EP  - 121
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/
LA  - ru
ID  - DM_2016_28_4_a8
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On groups containing the additive group of the residue ring or the vector space
%J Diskretnaya Matematika
%D 2016
%P 100-121
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/
%G ru
%F DM_2016_28_4_a8
B. A. Pogorelov; M. A. Pudovkina. On groups containing the additive group of the residue ring or the vector space. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 100-121. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a8/

[1] Pogorelov B. A., Osnovy teorii grupp podstanovok, v. 1, Obschie voprosy, M., 1986, 316 pp.

[2] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, New York, 1996, 346 pp. | MR | Zbl

[3] Pogorelov B. A., Pudovkina M. A., “Nadgruppy additivnykh regulyarnykh grupp poryadka $2^n$ koltsa vychetov i vektornogo prostranstva”, Diskretnaya matematika, 27:3 (2015), 74–94 ; Pogorelov B. A., Pudovkina M. A., “Overgroups of order $2^n$ additive regular groups of a residue ring and of a vector space”, Discrete Math. Appl., 26:4 (2016), 239–254 | DOI | MR | DOI | MR | Zbl

[4] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye po podgruppam i ikh kombinatorno-gruppovye svoistva”, Diskretnaya matematika, 27:4 (2015), 94–119 ; Pogorelov B. A., Pudovkina M. A., “Orbital derivatives over subgroups and their combinatorial and group-theoretic properties”, Discrete Math. Appl., 26:5 (2016), 279–298 | DOI | MR | DOI | MR | Zbl

[5] Pogorelov B. A., Pudovkina M. A., “O rasstoyaniyakh ot podstanovok do imprimitivnykh grupp pri fiksirovannoi sisteme imprimitivnosti”, Diskretnaya matematika, 25:3 (2013), 78–95 ; Pogorelov B. A., Pudovkina M. A., “On the distance from permutations to imprimitive groups for a fixed system of imprimitivity”, Discrete Math. Appl., 24:2 (2014), 95–108 | DOI | MR | DOI | Zbl

[6] Diskretnaya matematika. Entsiklopediya, Nauchnoe izdatelstvo “Bolshaya Rossiiskaya entsiklopediya”, M., 2004

[7] Glukhov M. M., Zubov A. Yu., “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Matematicheskie voprosy kibernetiki, 1999, no. 8, 5–32 | MR | Zbl

[8] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, SPb., 2011, 400 pp.

[9] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^{m}$-tsikl”, Algebra i logika, 19:2 (1980), 236–247 | MR

[10] Elizarov V. P., Konechnye koltsa, Gelios ARV, M., 2006, 304 pp.