Bounded prefix concatenation operation and finite bases with respect to the superposition
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 91-99

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with word functions over the alphabet $\{1,2\}$. Given arbitrary one-place functions $f_1,\ldots,f_l$, the class BPC$[f_1,\ldots,f_l]$ is defined as the closure of the set of simplest word functions and the functions $f_1,\ldots,f_l$ under the operations of superposition and bounded prefix concatenation. The class BPC$[f_1,\ldots,f_l]$ is shown to have a finite basis with respect to the superposition.
Keywords: operation of bounded prefix concatenation, finite basis with respect to the superposition.
@article{DM_2016_28_4_a7,
     author = {S. S. Marchenkov},
     title = {Bounded prefix concatenation operation and finite bases with respect to the superposition},
     journal = {Diskretnaya Matematika},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a7/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Bounded prefix concatenation operation and finite bases with respect to the superposition
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 91
EP  - 99
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a7/
LA  - ru
ID  - DM_2016_28_4_a7
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Bounded prefix concatenation operation and finite bases with respect to the superposition
%J Diskretnaya Matematika
%D 2016
%P 91-99
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a7/
%G ru
%F DM_2016_28_4_a7
S. S. Marchenkov. Bounded prefix concatenation operation and finite bases with respect to the superposition. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 91-99. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a7/