Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_4_a6, author = {V. V. Kochergin and A. V. Mikhailovich}, title = {The minimum number of negations in circuits for systems of multi-valued functions}, journal = {Diskretnaya Matematika}, pages = {80--90}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a6/} }
TY - JOUR AU - V. V. Kochergin AU - A. V. Mikhailovich TI - The minimum number of negations in circuits for systems of multi-valued functions JO - Diskretnaya Matematika PY - 2016 SP - 80 EP - 90 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a6/ LA - ru ID - DM_2016_28_4_a6 ER -
V. V. Kochergin; A. V. Mikhailovich. The minimum number of negations in circuits for systems of multi-valued functions. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 80-90. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a6/
[1] Gilbert E. N., “Teoretiko-strukturnye svoistva zamykayuschikh pereklyuchatelnykh funktsii”, Kiberneticheskii sbornik, 1, Izd-vo inostrannoi literatury, M., 1960, 175–188; E. N. Gilbert, “Lattice theoretic properties of frontal switching functions”, J. Math. Phys, 33 (1954), 56–67 | DOI | MR
[2] Kochergin V. V., Mikhailovich A. V., “O slozhnosti skhem v bazisakh, soderzhaschikh monotonnye elementy s nulevymi vesami”, Prikladnaya diskretnaya matematika, 2015, no. 4(30), 24–31
[3] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Moskovskogo universiteta, M., 1984
[4] Markov A. A., “On the inversion complexity of systems of functions”, J. ACM, 5:4 (1958), 331–334 | DOI | MR | Zbl | Zbl
[5] Markov A. A., “On the inversion complexity of systems of Boolean functions”, Soviet Math. Doklady, 4 (1963), 694–696 | Zbl
[6] Nechiporuk E. I., “O slozhnosti skhem v nekotorykh bazisakh, soderzhaschikh netrivialnye elementy s nulevymi vesami”, Problemy kibernetiki, 1962, no. 8, 123–160 | Zbl
[7] Sevidzh D. E., Slozhnost vychislenii, Faktorial, M., 1998; Savage J. E., The complexity of computing, Wiley, New York, 1976 | MR | Zbl
[8] Blais E., Canonne C. L., Oliveira I. C., Servedio R. A., Tan L.-Y., Electronic Colloquium on Computational Complexity, Report No 144, 2014 | MR
[9] Fischer M. J., “The complexity of negation-limited networks — a brief survey”, Lect. Notes Comput. Sci., 33, Springer, 1975, 71–82 | DOI | MR
[10] Guo S., Malkin T., Oliveira I. C., Rosen A., “The power of negations in cryptography”, Lect. Notes Comput. Sci., 9014, 2015, 36–65 | DOI | MR | Zbl
[11] Jukna S., Boolean Function Complexity. Advances and Frontiers, Springer, Berlin–Heidelberg, 2012 | MR | Zbl
[12] Kochergin V. V., Mikhailovich A. V., Some extensions of the inversion complexity of Boolean functions, Cornell University Library, 2015, arXiv: 1506.04485
[13] Kochergin V. V., Mikhailovich A. V., Inversion complexity of functions of multi-valued logic, Cornell University Library, 2015, arXiv: 1510.05942
[14] Morizumi H., A note on the inversion complexity of Boolean functions in Boolean formulas, Cornell University Library, 2008, arXiv: 0811.0699
[15] Morizumi H., “Limiting negations in formulas”, Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, v. I, Lect. Notes Comput. Sci., 5555, 2009, 701–712 | DOI | MR | Zbl
[16] Morizumi H., Suzuki G., “Negation-limited inverters of linear size”, IEICE Trans. Inf. and Syst., E93-D:2 (2011), 257–262
[17] Sung S., Tanaka K., “Limiting negations in bounded-depth circuits: an extension of Markov's theorem”, Lect. Notes Comput. Sci., 2906, 2003, 108–116 | DOI | MR | Zbl
[18] Tanaka K., Nishino T., Beals R., “Negation-limited circuit complexity of symmetric functions”, Inf. Proc. Lett., 59:5 (1996), 273–279 | DOI | MR | Zbl