On serial rings
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 150-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Let A be a ring such that all maximal indecomposable factor rings $A_i$ of $A$ are serial rings. Then every square matrix over $A$ is diagonalizable. In addition, if all the rings $A_i$ are Bezout rings, then every rectangular matrix over $A$ is diagonalizable. If $\varphi$ is an automorphism of the ring $A$, then the skew Laurent series ring $A((x,\varphi ))$ is a serial ring if and only if $A$ is a serial Artinian ring.
Keywords: serial ring, Bezout ring, diagonalizable ring, skew Laurent series ring.
@article{DM_2016_28_4_a11,
     author = {A. A. Tuganbaev},
     title = {On serial rings},
     journal = {Diskretnaya Matematika},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - On serial rings
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 150
EP  - 157
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/
LA  - ru
ID  - DM_2016_28_4_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T On serial rings
%J Diskretnaya Matematika
%D 2016
%P 150-157
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/
%G ru
%F DM_2016_28_4_a11
A. A. Tuganbaev. On serial rings. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/