On serial rings
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 150-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let A be a ring such that all maximal indecomposable factor rings $A_i$ of $A$ are serial rings. Then every square matrix over $A$ is diagonalizable. In addition, if all the rings $A_i$ are Bezout rings, then every rectangular matrix over $A$ is diagonalizable. If $\varphi$ is an automorphism of the ring $A$, then the skew Laurent series ring $A((x,\varphi ))$ is a serial ring if and only if $A$ is a serial Artinian ring.
Keywords: serial ring, Bezout ring, diagonalizable ring, skew Laurent series ring.
@article{DM_2016_28_4_a11,
     author = {A. A. Tuganbaev},
     title = {On serial rings},
     journal = {Diskretnaya Matematika},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - On serial rings
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 150
EP  - 157
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/
LA  - ru
ID  - DM_2016_28_4_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T On serial rings
%J Diskretnaya Matematika
%D 2016
%P 150-157
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/
%G ru
%F DM_2016_28_4_a11
A. A. Tuganbaev. On serial rings. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a11/

[1] Amitsur S. A., “Remarks on principal ideal rings”, Osaka Math. J., 15:1 (1963), 59–69 | MR | Zbl

[2] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Comm. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl

[3] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Canad. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl

[4] Gillman L., Henriksen M., “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl

[5] Gillman L., Henriksen M., “Some remarks about elementary divisor rings”, Trans. Amer. Math. Soc., 82:2 (1956), 362–365 | DOI | MR | Zbl

[6] Henriksen M., “Some remarks about elementary divisor rings, II”, Michigan Math. J., 3 (1956), 159–163 | MR | Zbl

[7] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66:2 (1949), 464–491 | DOI | MR | Zbl

[8] Larsen M. D., Lewis W. J., Shores T. S., “Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187:1 (1974), 231–248 | DOI | MR | Zbl

[9] Levy L. S., “Sometimes only square matrices can be diagonalized”, Proc. Amer. Math. Soc., 52 (1975), 18–22 | DOI | MR | Zbl

[10] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[11] Tuganbaev A. A., “Koltsa kosykh ryadov Lorana i uslovie maksimalnosti dlya pravykh annulyatorov”, Diskretnaya matematika, 20:1 (2008), 80–86 | DOI | MR | Zbl

[12] Tuganbaev A. A., “Koltsa Bezu bez netsentralnykh idempotentov”, Diskretnaya matematika, 28:2 (2016), 133–145 | DOI

[13] Tuganbaev D. A., “Laurent series rings and pseudo-differential operator rings”, J. Math. Sci. (New York), 128:3 (2005), 2843–2893 | DOI | MR | Zbl

[14] Warfield R. B., “Serial rings and finitely presented modules”, J. Algebra, 37:3 (1975), 187–222 | DOI | MR | Zbl

[15] Warfield R. B., “Stable generation of modules”, Lect. Notes Math., 700, 1979, 16–33 | DOI | MR | Zbl