On the number of maximal independent sets in complete $q$-ary trees
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 139-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the asymptotic behaviour of the number $\operatorname{mi}(T_{q,n})$ of maximal independent sets in a complete $q$-ary tree of height $n$. For some constants $\alpha_2$ and $\beta_2$ the asymptotic formula $\operatorname{mi}(T_{2,n})\thicksim \alpha_2\cdot (\beta_2)^{2^n}$ is shown to hold as $n\to\infty$. It is also proved that $\operatorname{mi}(T_{q,3k})\thicksim \alpha^{(1)}_q\cdot(\beta_q)^{q^{3k}},\operatorname{mi}(T_{q,3k+1})\thicksim \alpha^{(2)}_q\cdot(\beta_q)^{q^{3k+1}},\operatorname{mi}(T_{q,3k+2})\thicksim \alpha^{(3)}_q\cdot(\beta_q)^{q^{3k+2}}$ as $k\to \infty$ for any sufficiently large $q$, some three pairwise distinct constants $\alpha^{(1)}_q,\alpha^{(2)}_q,\alpha^{(3)}_q$ and a constant $b_q$.
Keywords: maximal independent set, complete $q$-ary tree.
@article{DM_2016_28_4_a10,
     author = {D. S. Taletskii and D. S. Malyshev},
     title = {On the number of maximal independent sets in complete $q$-ary trees},
     journal = {Diskretnaya Matematika},
     pages = {139--149},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a10/}
}
TY  - JOUR
AU  - D. S. Taletskii
AU  - D. S. Malyshev
TI  - On the number of maximal independent sets in complete $q$-ary trees
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 139
EP  - 149
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a10/
LA  - ru
ID  - DM_2016_28_4_a10
ER  - 
%0 Journal Article
%A D. S. Taletskii
%A D. S. Malyshev
%T On the number of maximal independent sets in complete $q$-ary trees
%J Diskretnaya Matematika
%D 2016
%P 139-149
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a10/
%G ru
%F DM_2016_28_4_a10
D. S. Taletskii; D. S. Malyshev. On the number of maximal independent sets in complete $q$-ary trees. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 139-149. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a10/