Cyclic decomposition of sets, set-splitting digraphs and cyclic classes of risk-free games
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 145-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions for the existence of coalition games with the result invariant under cyclic shifts of players sequence numbers. Given a total number $ n $ of players, we estimate the number $ k $ of players of one coalition under which there exists a game in which this coalition wins under all cyclic shifts of players. We give procedures for construction of the so-called set-splitting digraphs on which risk-free nim-type games of a given coalition are defined.
Keywords: positional game, risk-free game, cyclic sequence, difference set.
@article{DM_2016_28_3_a9,
     author = {A. M. Chudnov},
     title = {Cyclic decomposition of sets, set-splitting digraphs and cyclic classes of risk-free games},
     journal = {Diskretnaya Matematika},
     pages = {145--159},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a9/}
}
TY  - JOUR
AU  - A. M. Chudnov
TI  - Cyclic decomposition of sets, set-splitting digraphs and cyclic classes of risk-free games
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 145
EP  - 159
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a9/
LA  - ru
ID  - DM_2016_28_3_a9
ER  - 
%0 Journal Article
%A A. M. Chudnov
%T Cyclic decomposition of sets, set-splitting digraphs and cyclic classes of risk-free games
%J Diskretnaya Matematika
%D 2016
%P 145-159
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a9/
%G ru
%F DM_2016_28_3_a9
A. M. Chudnov. Cyclic decomposition of sets, set-splitting digraphs and cyclic classes of risk-free games. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 145-159. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a9/

[1] Vorobev H. H., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984 | MR

[2] Kummer B., Spiele auf Graphen, Deutscher Verlag der Wissenschaften, Berlin, 1980, 94 pp. | MR | MR | Zbl

[3] Singer J., “A Theorem in finite projective geometry and some applications to number theory”, Trans. Amer. Math. Soc, 43 (1938), 377–385 | DOI | MR | Zbl

[4] Baumert L. D., Cyclic difference sets, Lect. Notes in Math., 182, Springer-Verlag, 1971 | DOI | MR | Zbl

[5] Ryzer H. J., Combinatorial mathematics, Carus mathematical monographs, 14, Mathematical Association of America, distributed by Wiley, New York, 1963, 154 pp. | MR

[6] Hall M., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.–Toronto, Ont.–London, 1967, x+310 pp. | MR | MR | Zbl

[7] Baumert L. D., Gordon D. M., “On the existence of cyclic difference sets with small parameters”, High primes and misdemeanours: Fields Inst. Commun., 41 (2004), 61–68 | MR | Zbl