Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 59-96
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is concerned with estimating the number $\xi$ of ones in triangular arrays consisting of elements of the field $GF(2)$ which are defined by the bottom row of $s$ elements. The elements of each higher row are obtained (as in Pascal triangles) by the summation of pairs of elements from the corresponding lower row. It is shown that there exists a monotone unbounded sequence $0=k_0$ of rational numbers such that, for any $k>0$, for sufficiently large $s$ the admissible values of $\xi$ which are smaller than $ks$ or larger than $s(s+1)/3-sk/3$ are concentrated in neighbourhoods of points $k_is$ and $s(s+1)/3-sk_i/3$, $i\geqslant0$. The resulting estimates of the neighbourhoods are functions of $i$ for each $i\geqslant0$ and do not depend on $s$. The distributions of the numbers of triangles with values $\xi$ in these neighbourhoods depend only on the residues of $s$ with respect to moduli that depend on $i\geqslant0$.
Mots-clés :
Pascal triangle, (0-1)-matrix
Keywords: extreme combinatorial configuration.
Keywords: extreme combinatorial configuration.
@article{DM_2016_28_3_a5,
author = {F. M. Malyshev},
title = {Distribution of the extreme values of the number of ones in {Boolean} analogues of the {Pascal} triangle},
journal = {Diskretnaya Matematika},
pages = {59--96},
year = {2016},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a5/}
}
F. M. Malyshev. Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 59-96. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a5/
[1] Malyshev F. M., “Bazisy mnozhestva tselykh chisel otnositelno mnogomestnykh operatsii sdviga”, Matematicheskie voprosy kriptografii, 2:1 (2011), 29–73 | MR
[2] Wolfram S., “Cellular automaton supercomputing”, High-Speed Computing, Univ. of Illinois Press, 1988, 40–48
[3] Malyshev F. M., Kutyreva E. V., “On the distribution of the number of ones in a Boolean Pascal's triangle”, Discrete Math. Appl., 16:3 (2006), 271–279 | DOI | DOI | MR | Zbl
[4] Malyshev F. M., “Bazisy rekurrentnykh posledovatelnostei”, Chebyshevskii sbornik, 16:2 (2015), 155–185
[5] Berlekamp E. R., Algebraic Coding Theory, McGraw Hill, 1968, 466 pp. | MR | MR | Zbl