Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, with suitable time change, the finite-dimensional distributions of the process formed by successive values of the Pearson statistics for an expanding sample converge to finite-dimensional distributions of the stationary random process, namely, the normalized square of the Bessel process. The results obtained earlier on the limit joint distributions of the Pearson statistics are used to derive explicit formulas for the density of joint distributions of the Bessel process.
Keywords: Pearson statictics, sequential chi-square test, Bessel process.
@article{DM_2016_28_3_a4,
     author = {A. M. Zubkov and M. P. Savelov},
     title = {Convergence of the sequence of the {Pearson} statistics values to the normalized square of the {Bessel} process},
     journal = {Diskretnaya Matematika},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - M. P. Savelov
TI  - Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 49
EP  - 58
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/
LA  - ru
ID  - DM_2016_28_3_a4
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A M. P. Savelov
%T Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process
%J Diskretnaya Matematika
%D 2016
%P 49-58
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/
%G ru
%F DM_2016_28_3_a4
A. M. Zubkov; M. P. Savelov. Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 49-58. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/

[1] Zakharov V. K., Sarmanov O. V., Sevast'yanov B. A., “Sequential $\chi^2$ criteria”, Math. USSR-Sb., 8:3 (1969), 419–435 | DOI | MR | Zbl

[2] Selivanov B. I., Chistyakov V. P., “Multivariate chi-square distribution for non-homogeneous polynomial scheme”, Discrete Math. Appl., 8:3 (1998), 263–273 | DOI | DOI | MR | Zbl

[3] Ronzhin A. F., “The limit distribution for a chi-square process with disorder”, Theory Probab. Appl., 29:3 (1985), 613–617 | DOI | MR | Zbl

[4] Germogenov A. P., Ronzhin A. F., “A sequential chi-square test”, Theory Probab. Appl., 29:2 (1985), 397–403 | DOI | MR | Zbl

[5] Tumanyan S. Kh., “Asymptotic distribution of the $\chi^2 $ criterion when the number of observations and number of groups increase simultaneously”, Theory Probab. Appl., 1:1 (1956), 117–131 | DOI | MR | Zbl

[6] Borovkov A. A., Mathematical statistics, Gordon and Breach, 1998, 592 pp. | MR | Zbl

[7] Lebedev N. N., Special Functions $\$ Their Applications, Courier Corporation, 2012, 308 pp. | MR | MR

[8] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922, 804 pp. | MR | Zbl

[9] Cramer H., Mathematical Methods of Statistics, Princeton Math. Ser., Almqvist Wiksells, Uppsala, 1945, 575 pp. | MR | MR