Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_3_a4, author = {A. M. Zubkov and M. P. Savelov}, title = {Convergence of the sequence of the {Pearson} statistics values to the normalized square of the {Bessel} process}, journal = {Diskretnaya Matematika}, pages = {49--58}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/} }
TY - JOUR AU - A. M. Zubkov AU - M. P. Savelov TI - Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process JO - Diskretnaya Matematika PY - 2016 SP - 49 EP - 58 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/ LA - ru ID - DM_2016_28_3_a4 ER -
%0 Journal Article %A A. M. Zubkov %A M. P. Savelov %T Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process %J Diskretnaya Matematika %D 2016 %P 49-58 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/ %G ru %F DM_2016_28_3_a4
A. M. Zubkov; M. P. Savelov. Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 49-58. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a4/
[1] Zakharov V. K., Sarmanov O. V., Sevast'yanov B. A., “Sequential $\chi^2$ criteria”, Math. USSR-Sb., 8:3 (1969), 419–435 | DOI | MR | Zbl
[2] Selivanov B. I., Chistyakov V. P., “Multivariate chi-square distribution for non-homogeneous polynomial scheme”, Discrete Math. Appl., 8:3 (1998), 263–273 | DOI | DOI | MR | Zbl
[3] Ronzhin A. F., “The limit distribution for a chi-square process with disorder”, Theory Probab. Appl., 29:3 (1985), 613–617 | DOI | MR | Zbl
[4] Germogenov A. P., Ronzhin A. F., “A sequential chi-square test”, Theory Probab. Appl., 29:2 (1985), 397–403 | DOI | MR | Zbl
[5] Tumanyan S. Kh., “Asymptotic distribution of the $\chi^2 $ criterion when the number of observations and number of groups increase simultaneously”, Theory Probab. Appl., 1:1 (1956), 117–131 | DOI | MR | Zbl
[6] Borovkov A. A., Mathematical statistics, Gordon and Breach, 1998, 592 pp. | MR | Zbl
[7] Lebedev N. N., Special Functions $\$ Their Applications, Courier Corporation, 2012, 308 pp. | MR | MR
[8] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922, 804 pp. | MR | Zbl
[9] Cramer H., Mathematical Methods of Statistics, Princeton Math. Ser., Almqvist Wiksells, Uppsala, 1945, 575 pp. | MR | MR