Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_3_a0, author = {V. I. Afanasyev}, title = {Functional limit theorem for a stopped random walk attaining a high level}, journal = {Diskretnaya Matematika}, pages = {3--13}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/} }
V. I. Afanasyev. Functional limit theorem for a stopped random walk attaining a high level. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/
[1] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd edition, Wiley, 1968, 528 pp. | MR | Zbl
[2] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the M/G/1 queue”, J. Appl. Probab., 20:3 (1983), 675–688 | DOI | MR | Zbl
[3] Shimura M., “A class of conditional limit theorems related to ruin problem”, Ann. Probab., 11:1 (1983), 40–45 | DOI | MR | Zbl
[4] Afanasyev V. I., “On the maximum of a critical branching process in a random environment”, Discrete Math. Appl., 9:3 (1999), 267–284 | DOI | DOI | MR | Zbl
[5] Afanasyev V. I., “On the passage time of a fixed level by a critical branching process in a random environment”, Discrete Math. Appl., 9:6 (1999), 627–643 | DOI | DOI | MR | Zbl
[6] Afanasyev V. I., “On the passage time of the maximum of a critical branching process in a random environment and of a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264 | DOI | DOI | MR | Zbl
[7] Afanasyev V. I., “Arcsine Law for Branching Processes in a Random Environment and Galton–Watson Processes”, Theory Probab. Appl., 51:3 (2007), 401–414 | DOI | DOI | MR | Zbl
[8] Afanasyev V. I., “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13 | DOI | DOI | MR | Zbl
[9] Afanasyev V. I., “Brownian High Jump”, Theory Probab. Appl., 55:2 (2011), 183–197 | DOI | DOI | MR | Zbl