Functional limit theorem for a stopped random walk attaining a high level
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a stopped random walk with zero drift conditioned to attain a high level the theorem on the convergence in distribution to the Brownian high jump in the space $D\left[ 0,+\infty \right) $ is proved.
Keywords: Brownian meander, Brownian excursion, Brownian high jump, stopped random walk, functional limit theorems.
@article{DM_2016_28_3_a0,
     author = {V. I. Afanasyev},
     title = {Functional limit theorem for a stopped random walk attaining a high level},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Functional limit theorem for a stopped random walk attaining a high level
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 3
EP  - 13
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/
LA  - ru
ID  - DM_2016_28_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Functional limit theorem for a stopped random walk attaining a high level
%J Diskretnaya Matematika
%D 2016
%P 3-13
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/
%G ru
%F DM_2016_28_3_a0
V. I. Afanasyev. Functional limit theorem for a stopped random walk attaining a high level. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a0/

[1] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd edition, Wiley, 1968, 528 pp. | MR | Zbl

[2] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the M/G/1 queue”, J. Appl. Probab., 20:3 (1983), 675–688 | DOI | MR | Zbl

[3] Shimura M., “A class of conditional limit theorems related to ruin problem”, Ann. Probab., 11:1 (1983), 40–45 | DOI | MR | Zbl

[4] Afanasyev V. I., “On the maximum of a critical branching process in a random environment”, Discrete Math. Appl., 9:3 (1999), 267–284 | DOI | DOI | MR | Zbl

[5] Afanasyev V. I., “On the passage time of a fixed level by a critical branching process in a random environment”, Discrete Math. Appl., 9:6 (1999), 627–643 | DOI | DOI | MR | Zbl

[6] Afanasyev V. I., “On the passage time of the maximum of a critical branching process in a random environment and of a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264 | DOI | DOI | MR | Zbl

[7] Afanasyev V. I., “Arcsine Law for Branching Processes in a Random Environment and Galton–Watson Processes”, Theory Probab. Appl., 51:3 (2007), 401–414 | DOI | DOI | MR | Zbl

[8] Afanasyev V. I., “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13 | DOI | DOI | MR | Zbl

[9] Afanasyev V. I., “Brownian High Jump”, Theory Probab. Appl., 55:2 (2011), 183–197 | DOI | DOI | MR | Zbl