Upper bounds for the size and the depth of formulae for MOD-functions
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 108-116

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new upper bounds for the size and the depth of formulae for some MOD-functions (that is, functions counting $n$ bits modulo $m$). In particular, the depth of counting $n$ bits modulo $3$ is bounded by $2.8\log_2 n+O(1)$ in the standard basis $\{ \wedge, \vee, \overline{\phantom{a}} \}$; the size of counting modulo $5$ is bounded by $O(n^{3.22})$ in the same basis; the depth of counting modulo $7$ is bounded by $2.93\log_2 n+O(1)$ in the basis of all binary Boolean functions.
Keywords: symmetric Boolean function, depth, formula size.
@article{DM_2016_28_2_a9,
     author = {I. S. Sergeev},
     title = {Upper bounds for the size and the depth of formulae for {MOD-functions}},
     journal = {Diskretnaya Matematika},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a9/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - Upper bounds for the size and the depth of formulae for MOD-functions
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 108
EP  - 116
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a9/
LA  - ru
ID  - DM_2016_28_2_a9
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T Upper bounds for the size and the depth of formulae for MOD-functions
%J Diskretnaya Matematika
%D 2016
%P 108-116
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a9/
%G ru
%F DM_2016_28_2_a9
I. S. Sergeev. Upper bounds for the size and the depth of formulae for MOD-functions. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 108-116. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a9/