Limit theorems for the number of successes in random binary sequences with random embeddings
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 92-107
Voir la notice de l'article provenant de la source Math-Net.Ru
The sequence of $ n $ random $ (0,1) $-variables $ X_1,\,\ldots \, , \, X_n $ is considered, with $ \theta_n $ of these variables distributed equiprobable and the others take the value 1 with probability $ p $ ($ 0 p 1, p \neq 1/2 $), $\theta_n $ is a random variable taking values $ 0,\,1,\,\ldots ,\,n $). On the assumption that $ n \to \infty $ and under certain conditions imposed on $ p,\theta_n $ and $ X_k,\,k = 1,\ldots, n, $ several limit theorems for the sum $ S_n = \sum_{k=1}^n X_k $. The results are of interest in connection with steganography and statistical analysis of sequences produced by random number generators.
Keywords:
random binary sequence, random sum, random embeddings, steganography, convergence in distribution} \classification[Funding]{This work was supported by the RAS program «Modern problems in theoretic mathematics».
@article{DM_2016_28_2_a8,
author = {B. I. Selivanov and V. P. Chistyakov},
title = {Limit theorems for the number of successes in random binary sequences with random embeddings},
journal = {Diskretnaya Matematika},
pages = {92--107},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/}
}
TY - JOUR AU - B. I. Selivanov AU - V. P. Chistyakov TI - Limit theorems for the number of successes in random binary sequences with random embeddings JO - Diskretnaya Matematika PY - 2016 SP - 92 EP - 107 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/ LA - ru ID - DM_2016_28_2_a8 ER -
B. I. Selivanov; V. P. Chistyakov. Limit theorems for the number of successes in random binary sequences with random embeddings. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 92-107. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/