Limit theorems for the number of successes in random binary sequences with random embeddings
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 92-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sequence of $ n $ random $ (0,1) $-variables $ X_1,\,\ldots \, , \, X_n $ is considered, with $ \theta_n $ of these variables distributed equiprobable and the others take the value 1 with probability $ p $ ($ 0 p 1, p \neq 1/2 $), $\theta_n $ is a random variable taking values $ 0,\,1,\,\ldots ,\,n $). On the assumption that $ n \to \infty $ and under certain conditions imposed on $ p,\theta_n $ and $ X_k,\,k = 1,\ldots, n, $ several limit theorems for the sum $ S_n = \sum_{k=1}^n X_k $. The results are of interest in connection with steganography and statistical analysis of sequences produced by random number generators.
Keywords: random binary sequence, random sum, random embeddings, steganography, convergence in distribution} \classification[Funding]{This work was supported by the RAS program «Modern problems in theoretic mathematics».
@article{DM_2016_28_2_a8,
     author = {B. I. Selivanov and V. P. Chistyakov},
     title = {Limit theorems for the number of successes in random binary sequences with random embeddings},
     journal = {Diskretnaya Matematika},
     pages = {92--107},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/}
}
TY  - JOUR
AU  - B. I. Selivanov
AU  - V. P. Chistyakov
TI  - Limit theorems for the number of successes in random binary sequences with random embeddings
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 92
EP  - 107
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/
LA  - ru
ID  - DM_2016_28_2_a8
ER  - 
%0 Journal Article
%A B. I. Selivanov
%A V. P. Chistyakov
%T Limit theorems for the number of successes in random binary sequences with random embeddings
%J Diskretnaya Matematika
%D 2016
%P 92-107
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/
%G ru
%F DM_2016_28_2_a8
B. I. Selivanov; V. P. Chistyakov. Limit theorems for the number of successes in random binary sequences with random embeddings. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 92-107. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a8/

[1] S. Katzenbeiser, F. Petitcolas (eds.), Information Hiding Techniques for Steganography and Digital Watermarking, Artech House, Boston-London, 2000, XVIII + 220 pp.

[2] V. G. Gribunin, I. N. Okov, I. V. Turintsev, Tsifrovaya steganografiya, Solon-Press, M., 2002, 272 pp.

[3] A. V. Agranovskii, A. V. Balakin, V. G. Gribunin, S. A. Sapozhnikov, Steganografiya, tsifrovye vodyanye znaki i steganoanaliz, Vuzovskaya kniga, M., 2009, 220 pp.

[4] Knuth D., The art of computer programming. Volume 2. Seminumerical algorithms, Addison-Wesley, 1969, 688 pp. | MR

[5] M. A. Ivanov, I. V. Chugunkov, Teoriya, primenenie i otsenka kachestva generatorov psevdosluchainykh posledovatelnostei, Kudits-Obraz, M., 2003, 240 pp.

[6] V. A. Ivanov, “Modeli vkraplenii v odnorodnye sluchainye posledovatelnosti”, Tr. po diskr. matem., 11, no. 1, Fizmatlit, M., 2008, 18–34

[7] Ponomarev K. I., “On one statistical model of steganography”, Discrete Math. Appl., 19:3 (2009), 329–336 | DOI | DOI | MR | Zbl

[8] Ponomarev K. I., “A parametric model of embedding and its statistical analysis”, Discrete Math. Appl., 19:6 (2009), 587–596 | DOI | DOI | MR | Zbl

[9] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl., 23:2 (2013), 153–169 | DOI | DOI | MR | Zbl

[10] H. Robbins, “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54:12 (1948), 1151–1161 | DOI | MR | Zbl

[11] S. Kh. Sirazhdinov, G. Orazov, “Obobschenie odnoi teoremy G. Robbinsa”, Predelnye teoremy i statisticheskie vyvody, FAN, Tashkent, 1968, 154–162

[12] A. N. Shiryaev, Probability-1, 3 edition, Springer-Verlag New York, 2016, 486 pp. | MR