Estimates of the number of $(k,l)$-sumsets in the finite Abelian group
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subset $A$ of the group $G$ is called $(k,l)$-sumset if there exists subset $B\subseteq G$ such that $A=kB-lB$, where $kB-lB=\{x_1 +\dots +x_k-x_{k+1}\dots - x_{k+l}\mid x_1,\dots, x_{k+l} \in B\}$. Upper and lower bounds of the number of $(k,l)$-sumsets in the Abelian group are obtained.
Keywords: arithmetic progression, group, characteristic function, coset.
@article{DM_2016_28_2_a6,
     author = {V. G. Sargsyan},
     title = {Estimates of the number of $(k,l)$-sumsets in the finite {Abelian} group},
     journal = {Diskretnaya Matematika},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - Estimates of the number of $(k,l)$-sumsets in the finite Abelian group
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 71
EP  - 80
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/
LA  - ru
ID  - DM_2016_28_2_a6
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T Estimates of the number of $(k,l)$-sumsets in the finite Abelian group
%J Diskretnaya Matematika
%D 2016
%P 71-80
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/
%G ru
%F DM_2016_28_2_a6
V. G. Sargsyan. Estimates of the number of $(k,l)$-sumsets in the finite Abelian group. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 71-80. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/

[1] Green, B., Ruzsa, I., “Counting sumsets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica, 41 (2004), 285–293 | MR | Zbl

[2] Sargsyan V. G., “Chislo raznostei v gruppakh prostogo poryadka”, Diskretnaya matematika, 25:1 (2013), 152–158 | DOI | MR | Zbl

[3] Sargsyan, V. G., “Counting $(k,l)$-sumsets in groups of a prime order”, Acta Univ. Sapientiae, Informatica, 4:1 (2012), 33–47 | Zbl

[4] Sargsyan V. G., “Chislo summ i raznostei v abelevoi gruppe”, Diskretnyi analiz i issledovanie operatsii, 25:2 (2015), 73–85

[5] Nathanson, M. B., Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer-Verlag, Berlin, Heidelberg, New York, 1996, 296 pp. | MR | Zbl

[6] Green, B., Ruzsa, I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl