Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_2_a6, author = {V. G. Sargsyan}, title = {Estimates of the number of $(k,l)$-sumsets in the finite {Abelian} group}, journal = {Diskretnaya Matematika}, pages = {71--80}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/} }
V. G. Sargsyan. Estimates of the number of $(k,l)$-sumsets in the finite Abelian group. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 71-80. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a6/
[1] Green, B., Ruzsa, I., “Counting sumsets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica, 41 (2004), 285–293 | MR | Zbl
[2] Sargsyan V. G., “Chislo raznostei v gruppakh prostogo poryadka”, Diskretnaya matematika, 25:1 (2013), 152–158 | DOI | MR | Zbl
[3] Sargsyan, V. G., “Counting $(k,l)$-sumsets in groups of a prime order”, Acta Univ. Sapientiae, Informatica, 4:1 (2012), 33–47 | Zbl
[4] Sargsyan V. G., “Chislo summ i raznostei v abelevoi gruppe”, Diskretnyi analiz i issledovanie operatsii, 25:2 (2015), 73–85
[5] Nathanson, M. B., Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer-Verlag, Berlin, Heidelberg, New York, 1996, 296 pp. | MR | Zbl
[6] Green, B., Ruzsa, I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl