On limit behavior of maximum vertex degree in a conditional configuration graph near critical points
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 58-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider configuration graphs with $N$ vertices. The degrees of vertices are independent identically distributed random variables having the power-law distribution with parameter $\tau>0$. There are two critical values of this parameter: $\tau=1$ and $\tau=2$. The properties of a graph change significantly when $\tau=\tau(N)$ passes these points as $N\to\infty$. Let $G_{N, n}$ be the subset of random graphs under the condition that sum of degrees of its vertices is equal to $n$. The limit theorem for the maximum vertex degree in $G_{N, n}$ as $N, n\to\infty$ and $\tau\to 1$ or $\tau\to 2$ is proved.
Keywords:
random graph, configuration graph, maximum vertex degree, power-law distribution, critical point, limit theorems.
@article{DM_2016_28_2_a5,
author = {Yu. L. Pavlov and E. V. Feklistova},
title = {On limit behavior of maximum vertex degree in a conditional configuration graph near critical points},
journal = {Diskretnaya Matematika},
pages = {58--70},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a5/}
}
TY - JOUR AU - Yu. L. Pavlov AU - E. V. Feklistova TI - On limit behavior of maximum vertex degree in a conditional configuration graph near critical points JO - Diskretnaya Matematika PY - 2016 SP - 58 EP - 70 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a5/ LA - ru ID - DM_2016_28_2_a5 ER -
%0 Journal Article %A Yu. L. Pavlov %A E. V. Feklistova %T On limit behavior of maximum vertex degree in a conditional configuration graph near critical points %J Diskretnaya Matematika %D 2016 %P 58-70 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a5/ %G ru %F DM_2016_28_2_a5
Yu. L. Pavlov; E. V. Feklistova. On limit behavior of maximum vertex degree in a conditional configuration graph near critical points. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 58-70. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a5/