Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_2_a3, author = {D. S. Malyshev}, title = {Complexity classification of the edge coloring problem for a~family of graph classes}, journal = {Diskretnaya Matematika}, pages = {44--50}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a3/} }
D. S. Malyshev. Complexity classification of the edge coloring problem for a~family of graph classes. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a3/
[1] Vizing, V. G., “Ob otsenke khromaticheskogo klassa $p$-grafa”, Diskretnyi analiz, 3 (1964), 25–30 | MR
[2] Malyshev, D. S., “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. elektr. matem. izv., 11 (2014), 811–822 | Zbl
[3] Boliac, R., Lozin, V. V., “On the clique-width of graphs in hereditary classes”, Lect. Notes Comput. Sci., 2518 (2002), 44–54 | DOI | MR | Zbl
[4] Broersma, H. J., Golovach, P. A., Paulusma, D., Song, J., “Updating the complexity status of coloring graphs without a fixed induced linear forest”, Theor. comput. sci., 414:1 (2012), 9–19 | DOI | MR | Zbl
[5] Courcelle, B., Makowsky, J., Rotics, U., “Linear time solvable optimization problems on graphs of bounded clique-width”, Theory of Comput. Syst., 33:2 (2000), 125–150 | DOI | MR | Zbl
[6] Golovach, P. A., Paulusma, D., Song, J., “4-coloring $H$-free graphs when $H$ is small”, Discrete Appl. Math., 161:1–2 (2013), 140–150 | DOI | MR | Zbl
[7] Gurski, F., Wanke, E., “Line graphs of bounded clique-width”, Discrete Mathematics, 307:22 (2007), 2734–2754 | DOI | MR | Zbl
[8] Kobler, D., Rotics, D., “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Appl. Math., 126:2–3 (2003), 197–223 | DOI | MR
[9] Lozin, V. V., Kaminski, M., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. to Discr. Math., 2(1) (2007) | MR
[10] Malyshev, D. S., “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”, Discrete Math., 338:11 (2015), 1860–1865 | DOI | MR | Zbl
[11] Randerath, B., Schiermeyer, I., Tewes, M., “Three-colourability and forbidden subgraphs. II: polynomial algorithms”, Discrete Math., 251:1–3 (2002), 137–153 | DOI | MR | Zbl
[12] Roussopoulos, N., “A $\max\{m,n\}$ algorithm for determining the graph $H$ from its line graph $G$”, Inf. Process. Lett., 2:4 (1973), 108–112 | DOI | MR | Zbl
[13] Schrijver A., Combinatorial optimization — polyhedra and efficiency, Springer, Berlin, 2003, 1882 pp. | Zbl