@article{DM_2016_28_2_a2,
author = {O. V. Kamlovskii},
title = {Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method},
journal = {Diskretnaya Matematika},
pages = {27--43},
year = {2016},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/}
}
TY - JOUR AU - O. V. Kamlovskii TI - Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method JO - Diskretnaya Matematika PY - 2016 SP - 27 EP - 43 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/ LA - ru ID - DM_2016_28_2_a2 ER -
O. V. Kamlovskii. Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 27-43. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/
[1] Alferov A.P., Zubov A.Yu., Kuzmin A.S., Cheremushkin A.S., Osnovy kriptografii, Gelios ARV, M., 2001, 480 pp.
[2] Rueppel R.A., Analysis and design of stream ciphers, Springer-Verlag, Belrin, 1986, 244 pp. | MR | Zbl
[3] Korobov N.M., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Dokl. Akad. Nauk SSSR, 88:4 (1953), 603–606 | MR | Zbl
[4] Nechaev V.I., “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Trudy Matem. in-ta im. V.A.Steklova, 218 (1997), 335–342 | MR | Zbl
[5] Niederreiter H., “Distribution properties of feedback shift register sequences”, Probl. Control and Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl
[6] Shparlinskii I.E., “O raspredelenii znachenii rekurrentnykh posledovatelnostei”, Problemy peredachi informatsii, 25:2 (1989), 46–53 | MR
[7] Sidelnikov V.M., “Otsenki dlya chisla $r$-gramm na otrezke lineinoi rekurrentnoi posledovatelnosti”, Diskretnaya matematika, 3:2 (1991), 87–95 ; Sidel'nikov V.M., “Estimates for the number of appearances of elements on an interval of a recurrent sequence over a finite field”, Discrete Math. Appl., 2:5 (1992), 473–481 | DOI | MR
[8] Kamlovskii O.V., “Kolichestvo poyavlenii elementov v vykhodnykh posledovatelnostyakh filtruyuschikh generatorov”, Prikl. diskretnaya matematika, 2013, no. 3(21), 11–25
[9] Kumar P.V., Helleseth T., Calderbank A.R., “An upper bound for Weil exponential sums over Galois rings and applications”, IEEE Trans. Inform. Theory, 41:2 (1995), 456–468 | DOI | MR | Zbl
[10] Shanbhag A.G., Kumar P.V., Helleseth T., “Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some $q$-ary sequences”, IEEE Trans. Inform. Theory, 42:1 (1996), 250–254 | DOI | MR | Zbl
[11] Kamlovskii O.V., Kuzmin A.S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matematika, 6:4 (2000), 1083–1094 | MR | Zbl
[12] Kamlovskii O.V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sb., 200:4 (2009), 31–52 | DOI | MR | Zbl
[13] Fan S., Han W., “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^l}$”, IEEE Trans. Inf. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl
[14] Lahtonen J., Ling S., Sole P., Zinoviev D., “$\mathbb{Z}_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318–330 | DOI | MR | Zbl
[15] Sole P., Zinoviev D., “Distribution of $r$-patterns in the most significant bit of a maximum length sequence over $\mathbb Z_{2^l}$”, Lect. Notes Comput. Sci., 3486 (2005), 275–281 | DOI | Zbl
[16] Hu H., Feng D., Wu W., “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inf. Theory, 52:5 (2006), 2260–2265 | DOI | MR | Zbl
[17] Sole P., Zinoviev D., “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inf. Theory, 50:8 (2006), 1844–1846 | DOI | MR
[18] Kamlovskii O.V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matem. voprosy kriptografii, 1:4 (2010), 33–62
[19] Lidl R., Niederreiter H., “Finite fields”, Encyclopedia of Mathematics and its Applications, 20, Addison-Wesley, 1987, 755 pp. ; Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 822 pp. | MR
[20] Solodovnikov V.I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | MR | Zbl
[21] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra: Uchebnik. t. 2, Gelios ARV, M., 2003, 416 pp.
[22] Logachev O.A., Salnikov A.A., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR
[23] Golomb S.W., Gong G., “Signal design for good correlation”, New York, 2005, 438 pp. | MR
[24] Nechaev A.A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 ; Nechaev A. A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | MR | Zbl | DOI | Zbl
[25] McDonald B.R., Finite rings with identity, Dekker, New York, 1974, 429 pp. | MR | Zbl
[26] Nechaev A.A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56 ; Nechaev A. A., “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | MR | Zbl | MR
[27] Kamlovskii O.V., “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izvestiya RAN, 77:6 (2013), 71–96 | MR | Zbl