Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 27-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach is proposed for obtaining estimates of the number of solutions of systems of nonlinear equations. Final estimates are established in the case when the arguments of functions in the system are the signs of linear recurrent sequences over Galois rings.
Keywords: linear recurrent sequences, system of nonlinear equations, Galois rings, spectral method, cross-correlation coefficients.
@article{DM_2016_28_2_a2,
     author = {O. V. Kamlovskii},
     title = {Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method},
     journal = {Diskretnaya Matematika},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 27
EP  - 43
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/
LA  - ru
ID  - DM_2016_28_2_a2
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method
%J Diskretnaya Matematika
%D 2016
%P 27-43
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/
%G ru
%F DM_2016_28_2_a2
O. V. Kamlovskii. Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 27-43. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a2/