Modular algorithm for reducing matrices to the Smith normal form
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 154-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a complete justification of the modular algorithm for reducing matrices to the Hermitian normal form, which enables one to construct a new modular algorithm for reducing to the Smith normal form that may simultaneously calculate the left matrix of the transformations. The main term in the estimate of the number of operations is $2(n^3\log D)$, where $n$ is the size and $D$ is the determinant (or a multiple of it) of the matrix under consideration.
Keywords: matrix transformation algorithm, normal forms of matrices, complexity of algorithms.
@article{DM_2016_28_2_a14,
     author = {M. A. Cherepnev},
     title = {Modular algorithm for reducing matrices to the {Smith} normal form},
     journal = {Diskretnaya Matematika},
     pages = {154--160},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - Modular algorithm for reducing matrices to the Smith normal form
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 154
EP  - 160
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/
LA  - ru
ID  - DM_2016_28_2_a14
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T Modular algorithm for reducing matrices to the Smith normal form
%J Diskretnaya Matematika
%D 2016
%P 154-160
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/
%G ru
%F DM_2016_28_2_a14
M. A. Cherepnev. Modular algorithm for reducing matrices to the Smith normal form. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 154-160. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/

[1] Cohen H., A course in computational algebraic number theory, Springer-Verlag, Berlin, Heidelberg, 1993, 545 pp. | MR | Zbl

[2] Knut D., Iskusstvo programmirovaniya na EVM. t.2, S.-P.: Vilyams, 2000, 682 pp.; Knuth D., The art of computer programming. Volume 2. Seminumerical algorithms, Addison-Wesley, 1969, 688 pp. | MR

[3] Wilkening J., Yu J., “A local construction of the Smith normal form of a matrix polynomial”, J. Symb. Comput., 46 (2001), 1–22 | DOI | MR

[4] Storjohann A., Algorithms for matrix Canonical Forms, A dissertation for the degree of Doctor of Technical Sciences, 2013, 180 pp.