Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_2_a14, author = {M. A. Cherepnev}, title = {Modular algorithm for reducing matrices to the {Smith} normal form}, journal = {Diskretnaya Matematika}, pages = {154--160}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/} }
M. A. Cherepnev. Modular algorithm for reducing matrices to the Smith normal form. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 154-160. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a14/
[1] Cohen H., A course in computational algebraic number theory, Springer-Verlag, Berlin, Heidelberg, 1993, 545 pp. | MR | Zbl
[2] Knut D., Iskusstvo programmirovaniya na EVM. t.2, S.-P.: Vilyams, 2000, 682 pp.; Knuth D., The art of computer programming. Volume 2. Seminumerical algorithms, Addison-Wesley, 1969, 688 pp. | MR
[3] Wilkening J., Yu J., “A local construction of the Smith normal form of a matrix polynomial”, J. Symb. Comput., 46 (2001), 1–22 | DOI | MR
[4] Storjohann A., Algorithms for matrix Canonical Forms, A dissertation for the degree of Doctor of Technical Sciences, 2013, 180 pp.