Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_2_a12, author = {A. A. Tuganbaev}, title = {Bezout rings without non-central idempotents}, journal = {Diskretnaya Matematika}, pages = {133--145}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/} }
A. A. Tuganbaev. Bezout rings without non-central idempotents. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/
[1] Amitsur S.A., “Remarks on principal ideal rings”, Osaka Math. J., 15:1 (1963), 59–69 | MR | Zbl
[2] Burgess W.D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Comm. Algebra., 6:9 (1978), 863–886 | DOI | MR | Zbl
[3] Burgess W.D., Stephenson W., “Rings all of whose Pierce stalks are local”, Canad. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl
[4] Gillman L., Henriksen M., “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl
[5] Gillman L., Henriksen M., “Some remarks about elementary divisor rings”, Trans. Amer. Math. Soc., 82:2 (1956), 362–365 | DOI | MR | Zbl
[6] Henriksen M., “Some remarks about elementary divisor rings, II”, Michigan Math. J., 1956, no. 3, 159–163 | MR | Zbl
[7] Jondrup S., “p.p. rings and finitely generated flat ideals”, Trans. Amer. Math. Soc., 28:2 (1971), 431–435 | MR
[8] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66:2 (1949), 464–491 | DOI | MR | Zbl
[9] Lam T.Y., Lectures on Modules and Rings, Springer, New York, 1999 | MR | Zbl
[10] Larsen M.D., Lewis W.J., Shores T.S., “Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187:1 (1974), 231–248 | DOI | MR | Zbl
[11] Levy L.S., “Sometimes only square matrices can be diagonalized”, Proc. Amer. Math. Soc., 52 (1975), 18–22 | DOI | MR | Zbl
[12] Nicholson W.K., “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229:2 (1977), 269–278 | DOI | MR | Zbl
[13] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28 (1974), 291–310 | DOI | MR | Zbl
[14] Tuganbaev A.A., “Flat modules and rings finitely generated as modules over their centers”, Mathematical Notes, 60:2 (1996), 186–203 | DOI | MR | Zbl
[15] Tuganbaev A.A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl
[16] Tuganbaev A.A., Rings Close to Regular, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl
[17] Warfield R.B., “Stable generation of modules”, Lect. Notes Math., 700 (1979), 16–33 | DOI | MR | Zbl