Bezout rings without non-central idempotents
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 133-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a Bezout ring without non-central idempotents. If $A$ is a right or left Rickartian ring, then $A$ is an Hermitian ring. If $A$ is an exchange ring, then every rectangular matrix over $A$ is diagonalizable.
Keywords: Bezout ring, Hermitian ring, diagonalizable ring.
@article{DM_2016_28_2_a12,
     author = {A. A. Tuganbaev},
     title = {Bezout rings without non-central idempotents},
     journal = {Diskretnaya Matematika},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Bezout rings without non-central idempotents
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 133
EP  - 145
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/
LA  - ru
ID  - DM_2016_28_2_a12
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Bezout rings without non-central idempotents
%J Diskretnaya Matematika
%D 2016
%P 133-145
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/
%G ru
%F DM_2016_28_2_a12
A. A. Tuganbaev. Bezout rings without non-central idempotents. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a12/