On $1$-stable perfectly balanced Boolean functions
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 117-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with relations between the correlation-immunity (stability) and the perfectly balancedness of Boolean functions. It is shown that an arbitrary perfectly balanced Boolean function fails to satisfy a certain property that is weaker than the $1$-stability. This result refutes some assertions by Markus Dichtl. On the other hand, we present new results on barriers of perfectly balanced Boolean functions which show that any perfectly balanced function such that the sum of the lengths of barriers is smaller than the length of variables, is $1$-stable.
Keywords: perfectly balanced functions, barriers of Boolean functions, correlation-immunity, cryptography.
@article{DM_2016_28_2_a10,
     author = {S. V. Smyshlyaev},
     title = {On $1$-stable perfectly balanced {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a10/}
}
TY  - JOUR
AU  - S. V. Smyshlyaev
TI  - On $1$-stable perfectly balanced Boolean functions
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 117
EP  - 126
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a10/
LA  - ru
ID  - DM_2016_28_2_a10
ER  - 
%0 Journal Article
%A S. V. Smyshlyaev
%T On $1$-stable perfectly balanced Boolean functions
%J Diskretnaya Matematika
%D 2016
%P 117-126
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a10/
%G ru
%F DM_2016_28_2_a10
S. V. Smyshlyaev. On $1$-stable perfectly balanced Boolean functions. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 117-126. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a10/