Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_2_a1, author = {D. V. Zakablukov}, title = {On the gate complexity of reversible circuits consisting of {NOT,} {CNOT} and {2-CNOT} gates}, journal = {Diskretnaya Matematika}, pages = {12--26}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a1/} }
D. V. Zakablukov. On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 12-26. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a1/
[1] C. E. Shannon, “The synthesis of two-terminal switching circuits”, Bell System Technical Journal, 28:8 (1949), 59–98 | DOI | MR
[2] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2003, 384 pp. | MR
[3] N. A. Karpova, “O vychisleniyakh s ogranichennoi pamyatyu”, Matematicheskie voprosy kibernetiki, 2, Nauka, M., 1989, 131-144 | MR
[4] R. Feynman, “Quantum Mechanical Computers”, Optic News, 11:2 (1985), 11–20 | DOI | MR
[5] D. A. Maslov, Reversible Logic Synthesis, Ph. D. Thesis, 2003, 165 pp.
[6] D. V. Zakablukov, “Snizhenie ventilnoi slozhnosti obratimykh skhem bez ispolzovaniya tablits ekvivalentnykh zamen kompozitsii ventilei”, Nauka i obrazovanie. MGTU im. N. E. Baumana. Elektron. zhurn., 2014, no. 3, Mart | DOI
[7] V. V. Shende, A. K. Prasad, I. L. Markov, J. P. Hayes, “Synthesis of Reversible Logic Circuits”, IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst., 22, no. 6, 2006, 710–722 | DOI
[8] D. V. Zakablukov, A. E. Zhukov, “Issledovanie skhem iz obratimykh logicheskikh elementov”, Informatika i sistemy upravleniya v XXI veke, Sbornik trudov #9 molodykh uchenykh, aspirantov i studentov, MGTU im. N. E. Baumana, Moskva, 2012, 148–157
[9] D. V. Zakablukov, “Bystryi algoritm sinteza obratimykh skhem na osnove teorii grupp podstanovok”, Prikladnaya diskretnaya matematika, 2014, no. 2, Iyun, 101–109
[10] M. M. Glukhov, A. Yu. Zubov, “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Matematicheskie voprosy kibernetiki, vyp. 8, Nauka, M., 1999, 5–32 | MR