Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_1_a8, author = {M. A. Cherepnev}, title = {Extension of the {Rissanen} algorithm to the factorization of {block-Hankel} matrices for solving systems of linear equations}, journal = {Diskretnaya Matematika}, pages = {150--155}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/} }
TY - JOUR AU - M. A. Cherepnev TI - Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations JO - Diskretnaya Matematika PY - 2016 SP - 150 EP - 155 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/ LA - ru ID - DM_2016_28_1_a8 ER -
%0 Journal Article %A M. A. Cherepnev %T Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations %J Diskretnaya Matematika %D 2016 %P 150-155 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/ %G ru %F DM_2016_28_1_a8
M. A. Cherepnev. Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations. Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/
[1] Rissanen J., “Solution of linear equations with Hankel and Toeplitz matrices”, Numer.Math., 22 (1974), 361–366 | DOI | MR | Zbl
[2] Rissanen J., “Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials”, Math. Comp., 27:121 (1973), 147–154 | DOI | MR | Zbl
[3] Astakhov V., “Estimates of the running time and memory requirements of the new algorithm of solving large sparse linear systems the field with two elements”, Tambov Univ. Repts, 15:4 (2010), 1311–1327 | MR
[4] Labahn G., Choi D.K., Cabay S., The inverses of block Hankel and block Toeplitz matrices, 19:1 (1990), 98–123 | MR | Zbl
[5] Karavanja P., Barel M.V., “A fast block Hankel solver based on an inversion for block Loewner matrices”, Linear Algebr. Appl., 282:1-3 (1998), 275–295 | DOI | MR