Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations
Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 150-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extension of the well-known Rissanen algorithm [R1] is proposed for solving systems of linear equations with block-Hankel and block-Toeplitz matrices.
Keywords: block-Hankel matrices, block-Toeplitz matrices, solvers of linear equations.
@article{DM_2016_28_1_a8,
     author = {M. A. Cherepnev},
     title = {Extension of the {Rissanen} algorithm to the factorization of {block-Hankel} matrices for solving systems of linear equations},
     journal = {Diskretnaya Matematika},
     pages = {150--155},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 150
EP  - 155
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/
LA  - ru
ID  - DM_2016_28_1_a8
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations
%J Diskretnaya Matematika
%D 2016
%P 150-155
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/
%G ru
%F DM_2016_28_1_a8
M. A. Cherepnev. Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations. Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/DM_2016_28_1_a8/

[1] Rissanen J., “Solution of linear equations with Hankel and Toeplitz matrices”, Numer.Math., 22 (1974), 361–366 | DOI | MR | Zbl

[2] Rissanen J., “Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials”, Math. Comp., 27:121 (1973), 147–154 | DOI | MR | Zbl

[3] Astakhov V., “Estimates of the running time and memory requirements of the new algorithm of solving large sparse linear systems the field with two elements”, Tambov Univ. Repts, 15:4 (2010), 1311–1327 | MR

[4] Labahn G., Choi D.K., Cabay S., The inverses of block Hankel and block Toeplitz matrices, 19:1 (1990), 98–123 | MR | Zbl

[5] Karavanja P., Barel M.V., “A fast block Hankel solver based on an inversion for block Loewner matrices”, Linear Algebr. Appl., 282:1-3 (1998), 275–295 | DOI | MR