Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conjugacy word problem in the tree product of free groups with a cyclic amalgamation is solved in the positive. This result generalizes the known result obtained by S. Lipschutz for the free product of two free groups with cyclic amalgamation. Solution of the main problem involves proving the solvability of the problem of intersection of a finitely generated subgroup of a given class of groups with a cyclic subgroup belonging to the factor of the main group; the solvability of the problem of intersection of a coset of a finitely generated subgroup with a cyclic subgroup belonging to a free factor.
Keywords: group, subgroup, conjugacy problem, free product with amalgamation.
@article{DM_2016_28_1_a0,
     author = {V. N. Bezverkhnii and E. S. Logacheva},
     title = {Conjugacy word problem in the tree product of free groups with a cyclic amalgamation},
     journal = {Diskretnaya Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_1_a0/}
}
TY  - JOUR
AU  - V. N. Bezverkhnii
AU  - E. S. Logacheva
TI  - Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 3
EP  - 18
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_1_a0/
LA  - ru
ID  - DM_2016_28_1_a0
ER  - 
%0 Journal Article
%A V. N. Bezverkhnii
%A E. S. Logacheva
%T Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
%J Diskretnaya Matematika
%D 2016
%P 3-18
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_1_a0/
%G ru
%F DM_2016_28_1_a0
V. N. Bezverkhnii; E. S. Logacheva. Conjugacy word problem in the tree product of free groups with a cyclic amalgamation. Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_2016_28_1_a0/

[1] Bezverkhnii V.N., “Reshenie problemy vkhozhdeniya dlya odnogo klassa grupp”, Voprosy teorii grupp i polugrupp, TGPI im. L.N. Tolstogo, 1972, 3–86

[2] Bezverkhnii V.N., “Reshenie problemy sopryazhennosti podgrupp v odnom klasse HNN–grupp”, Algoritmicheskie problemy teorii grupp i polugrupp i ikh prilozheniya, Mezhvuzovskii sbornik nauchnykh trudov, TGPI im. L.N. Tolstogo, 1983, 50–80

[3] Bezverkhnii V.N., “Reshenie problemy sopryazhennosti podgrupp dlya odnogo klassa grupp. I-II”, Sovremennaya algebra. Mezhvuzovskii sbornik, 6, LGPI, 1977, 16–32 | MR

[4] Bezverkhnii V.N., “O peresechenii konechno-porozhdennykh podgrupp svobodnoi gruppy”, Sbornik nauchnykh trudov kafedry vysshei matematiki, v. 2, Tulskii politekhnicheskii institut, 1974, 51–56

[5] Bezverkhnii V.N., “Reshenie problemy sopryazhennosti slov v nekotorykh klassakh grupp”, Algoritmicheskie problemy teorii grupp i polugrupp, Mezhvuzovskii sbornik nauchnykh trudov, TGPI im. L.N. Tolstogo, 1990, 103–152 | MR

[6] Lyndon R.C., Schupp P.E., Combinatorial group theory, Springer, 1977 | MR | MR | Zbl

[7] Magnus W., Karrass A., Solitar D., Combinatorial group theory, Interscience Publishers, New York, 1966 | MR | Zbl

[8] Lipschutz S., “The generalization of Dehn's result on the conjugacy problem”, Proc. Amer. Math. Soc., 150 (1966), 759–762 | MR

[9] Karras A., Solitar D., “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150 (1970), 227–255 | DOI | MR | Zbl