Galois theory for clones and superclones
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 79-93

Voir la notice de l'article provenant de la source Math-Net.Ru

We study clones (closed sets of operations that contain projections) and superclones on finite sets. According to A. I. Mal'tsev a clone may be considered as an algebra. If we replace algebra universe with a set of multioperations and add the operation of simplest equation solvability then we will obtain an algebra called a superclone. The paper establishes Galois connection between clones and superclones.
Keywords: clone, superclone, operation, multioperation, superposition.
@article{DM_2015_27_4_a6,
     author = {N. A. Peryazev and I. K. Sharankhaev},
     title = {Galois theory for clones and superclones},
     journal = {Diskretnaya Matematika},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a6/}
}
TY  - JOUR
AU  - N. A. Peryazev
AU  - I. K. Sharankhaev
TI  - Galois theory for clones and superclones
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 79
EP  - 93
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a6/
LA  - ru
ID  - DM_2015_27_4_a6
ER  - 
%0 Journal Article
%A N. A. Peryazev
%A I. K. Sharankhaev
%T Galois theory for clones and superclones
%J Diskretnaya Matematika
%D 2015
%P 79-93
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a6/
%G ru
%F DM_2015_27_4_a6
N. A. Peryazev; I. K. Sharankhaev. Galois theory for clones and superclones. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 79-93. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a6/