A generalization of Ore's theorem on polynomials
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $GF(q)$ be the field of $q$ elements and ${V_n}(q)$ denote the $n$-dimensional vector space over the field $GF(q)$. The linearized polynomial that corresponds to the polynomial $f(x) = {x^n} - \sum\limits_{i = 0}^{n - 1} {{c_i}{x^i}} \;$over the field $GF(q)$ is the polynomial $F(x) = {x^{{q^n}}} - \sum\limits_{i = 0}^{n - 1} {{c_i}{x^{{q^i}}}}$. Let ${T_f}$ denote the transformation of the vector space ${V_n}(q)$ determined by the rule ${T_f}\left( {({u_0},...,{u_{n - 2}},{u_{n - 1}})} \right) = ({u_1},...,{u_{n - 1}},\sum\limits_{i = 0}^{n - 1} {{c_i}{u_i}} )$. It is shown that if ${c_0} \ne 0$, then the graph of the transformation ${T_f}$ is isomorphic to the graph of the transformation $Q:\alpha \to {\alpha ^q}$ on the set of all roots of the polynomial $F(x)$ in its splitting field. In this case the graph of the transformation ${T_f}$ consists of cycles of lengths $1 \le {d_1} \le {d_2} \le ... \le {d_r}$ if and only if the polynomial $F(x)$ is the product of $r + 1$ irreducible factors of degrees $1,{d_1},{d_2},...,{d_r}$.
Keywords: linearized polynomial, primitive polynomial, isomorphism of graphs, Ore's theorem.
@article{DM_2015_27_4_a1,
     author = {A. V. Anashkin},
     title = {A generalization of {Ore's} theorem on polynomials},
     journal = {Diskretnaya Matematika},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a1/}
}
TY  - JOUR
AU  - A. V. Anashkin
TI  - A generalization of Ore's theorem on polynomials
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 21
EP  - 25
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a1/
LA  - ru
ID  - DM_2015_27_4_a1
ER  - 
%0 Journal Article
%A A. V. Anashkin
%T A generalization of Ore's theorem on polynomials
%J Diskretnaya Matematika
%D 2015
%P 21-25
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a1/
%G ru
%F DM_2015_27_4_a1
A. V. Anashkin. A generalization of Ore's theorem on polynomials. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 21-25. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a1/

[1] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988

[2] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Gelios ARV, M., 2003.

[3] Nechaev A.A., Popov V.O., “Obobschenie teoremy Ore o neprivodimykh mnogochlenakh nad konechnym polem”, Diskretnaya matematika, 27:1 (2015), 108–110 | DOI | MR

[4] Tsirler N., “Lineinye vozvratnye posledovatelnosti”, Kiberneticheskii sbornik, No 6, Izdatelstvo inostrannoi literatury, M., 1963, 55–79