Finite automata and numbers
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 3-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We study finite automata representations of numerical rings. Such representations correspond to the class of linear $p$-adic automata that compute homogeneous linear functions with rational coefficients in the ring of $p$-adic integers. Finite automata act both as ring elements and as operations. We also study properties of transition diagrams of automata that compute a function $f(x)=cx$ of one variable. In particular we obtain precise values for the number of states of such automata and show that for $c>0$ transition diagrams are self-dual (this property generalises self-duality of Boolean functions). We also obtain the criterion for an automaton computing a function $f(x)=cx$ to be a permutation automaton, and fully describe groups that are transition semigroups of such automata.
Keywords: linear automata, $p$-adic numbers, automata structure, transition diagrams, transition semigroups.
@article{DM_2015_27_4_a0,
     author = {S. V. Aleshin and P. A. Panteleev},
     title = {Finite automata and numbers},
     journal = {Diskretnaya Matematika},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a0/}
}
TY  - JOUR
AU  - S. V. Aleshin
AU  - P. A. Panteleev
TI  - Finite automata and numbers
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 3
EP  - 20
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a0/
LA  - ru
ID  - DM_2015_27_4_a0
ER  - 
%0 Journal Article
%A S. V. Aleshin
%A P. A. Panteleev
%T Finite automata and numbers
%J Diskretnaya Matematika
%D 2015
%P 3-20
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a0/
%G ru
%F DM_2015_27_4_a0
S. V. Aleshin; P. A. Panteleev. Finite automata and numbers. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a0/