Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 74-94
Cet article a éte moissonné depuis la source Math-Net.Ru
The additive groups of the residue ring ${\mathbb{Z}_{{2^n}}}$ and of the vector space ${V_n}$ over the field $GF(2)$, as well as the group ${G_n}$ generated by these additive groups, share common imprimitivity systems and enter as subgroups into the Sylow 2-subgroup of the symmetric group $S({\mathbb{Z}_{{2^n}}})$. These groups are used in cryptography as an encryption tool with the operations of addition in ${V_n}$ and ${\mathbb{Z}_{{2^n}}}$. The permutation structure of the subgroups of the group ${G_n}$ is presented. The kernels of homomorphisms which correspond to various systems of imprimitivity, the normal subgroups, and some modular representations of the group ${G_n}$ over the field $GF(2)$ are described.
Keywords:
wreath product of permutation groups, Sylow 2-subgroup, additive group of the residue ring, additive group of the vector space.
Mots-clés : imprimitive group
Mots-clés : imprimitive group
@article{DM_2015_27_3_a5,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space},
journal = {Diskretnaya Matematika},
pages = {74--94},
year = {2015},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a5/}
}
TY - JOUR
AU - B. A. Pogorelov
AU - M. A. Pudovkina
TI - Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space
JO - Diskretnaya Matematika
PY - 2015
SP - 74
EP - 94
VL - 27
IS - 3
UR - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a5/
LA - ru
ID - DM_2015_27_3_a5
ER -
B. A. Pogorelov; M. A. Pudovkina. Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 74-94. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a5/
[1] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Elsevier, 2009, 232 pp. | MR
[2] Pogorelov B.A., Pudovkina M.A., “Orbitalnye proizvodnye nad koltsom vychetov. Chast I. Obschie svoistva”, Matematicheskie voprosy kriptografii, 5:4 (2014), 99–127
[3] Pogorelov B.A., Pudovkina M.A., “Orbitalnye proizvodnye nad koltsom vychetov. Chast II. Veroyatnostno-kombinatornye svoistva”, Matematicheskie voprosy kriptografii, 6:1 (2015), 117–133 | MR
[4] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004
[5] Grossman E., Group theoretic remark on cryptographic system based on two types of additions, Tech. Rept. 4742, Math. Sci. Dept., IBM Watson Res. Center, Yorktown Heights, New York, 1974