On some measures of complexity of finite Abelian groups
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 25-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a finite Abelian multiplicative group $G$ be specified by the basis $B = \{ a_1, a_2, \ldots , a_q\}$, that is, the group $G$ is decomposed into a direct product of cyclic subgroups generated by the elements of the set $B$: $G= \langle a_1 \rangle \times \langle a_2 \rangle \times \ldots \times \langle a_q \rangle$. The complexity $L(g;B)$ of an element $g$ of the group $G$ in the basis $B$ is defined as the minimum number of multiplication operations required to compute the element $g$ given the basis $B$ (it is allowed to use the results of intermediate computations many times). Let $L(G, B)= \max\limits_{g \in G} L(g; B),$ $ LM(G)= \max\limits_{B} L(G, B),$ $Lm(G)= \min\limits_{B} L(G, B),$ $M(n) = \max\limits_{G \colon |G| \le n} LM(G),$ $m(n) = \max\limits_{G \colon |G| \le n} Lm(G),$ $M_{\hbox{\small av}}(n) = \left( \sum\limits_{G \colon |G|= n}{ LM(G)}\right)/{A(n)},$ $m_{\hbox{\small av}}(n) = \left( \sum\limits_{G \colon |G|= n}{ Lm(G)}\right)/{A(n)},$ where $A(n)$ is the number of Abelian groups of order $n$. In this work the asymptotic estimates for the quantities $L(G, B)$, $M(n)$, $m(n)$, $M_{\hbox{\small av}}(n)$, and ${m_{\hbox{\small av}}}(n)$ are established.
Keywords: finite Abelian group, computational complexity, addition chains, vectorial addition chains, Bellman's problem, Knuth's problem.
@article{DM_2015_27_3_a2,
     author = {V. V. Kochergin},
     title = {On some measures of complexity of finite {Abelian} groups},
     journal = {Diskretnaya Matematika},
     pages = {25--43},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a2/}
}
TY  - JOUR
AU  - V. V. Kochergin
TI  - On some measures of complexity of finite Abelian groups
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 25
EP  - 43
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a2/
LA  - ru
ID  - DM_2015_27_3_a2
ER  - 
%0 Journal Article
%A V. V. Kochergin
%T On some measures of complexity of finite Abelian groups
%J Diskretnaya Matematika
%D 2015
%P 25-43
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_3_a2/
%G ru
%F DM_2015_27_3_a2
V. V. Kochergin. On some measures of complexity of finite Abelian groups. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 25-43. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a2/