A Markov chain with number-theoretic limit distribution
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 17-24
Cet article a éte moissonné depuis la source Math-Net.Ru
Let an urn contain balls of white and black colors. After each step with probabilities equal to $\frac12$ either the number of white balls is increased by the number of black balls or the number of black balls is increased by the number of white balls. Formulas for the first two moments of the total number of balls in an urn are derived and it is shown that the limiting distribution function of the proportion of the number of white balls in an urn coincides with the Minkowski number-theoretic function. \def\acknowledgementname{Funding
Mots-clés :
discrete Markov chains, limit distributions
Keywords: iterations of random mappings, Minkowski function.
Keywords: iterations of random mappings, Minkowski function.
@article{DM_2015_27_3_a1,
author = {Andrey M. Zubkov and Kseniya A. Kolesnikova},
title = {A {Markov} chain with number-theoretic limit distribution},
journal = {Diskretnaya Matematika},
pages = {17--24},
year = {2015},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/}
}
Andrey M. Zubkov; Kseniya A. Kolesnikova. A Markov chain with number-theoretic limit distribution. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 17-24. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/
[1] Salem R., “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl
[2] Gelfond A., Ischislenie konechnykh raznostei, GIFML, Moskva, 1959 | MR
[3] Celler F., Leedham-Green C.R., Murray S., Niemeyer A., O'Brien E.A., “Generating random elements of a finite group”, Comm. Alg., 23 (1995), 4931–4948 | DOI | MR | Zbl
[4] Diaconis P., Saloff-Coste L., “Walks on generating sets of Abelian groups”, Probab. Theory Relat. Fields, 105 (1996), 393–421 | DOI | MR | Zbl
[5] Lubotzky A., Pak I., “The product replacement algorithm and Kazdan's property (T)”, J. Amer. Math. Soc., 14:2 (2000), 347–363 | DOI | MR