A Markov chain with number-theoretic limit distribution
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let an urn contain balls of white and black colors. After each step with probabilities equal to $\frac12$ either the number of white balls is increased by the number of black balls or the number of black balls is increased by the number of white balls. Formulas for the first two moments of the total number of balls in an urn are derived and it is shown that the limiting distribution function of the proportion of the number of white balls in an urn coincides with the Minkowski number-theoretic function. \def\acknowledgementname{Funding
Keywords: discrete Markov chains, iterations of random mappings, limit distributions, Minkowski function.
@article{DM_2015_27_3_a1,
     author = {Andrey M. Zubkov and Kseniya A. Kolesnikova},
     title = {A {Markov} chain with number-theoretic limit distribution},
     journal = {Diskretnaya Matematika},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/}
}
TY  - JOUR
AU  - Andrey M. Zubkov
AU  - Kseniya A. Kolesnikova
TI  - A Markov chain with number-theoretic limit distribution
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 17
EP  - 24
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/
LA  - ru
ID  - DM_2015_27_3_a1
ER  - 
%0 Journal Article
%A Andrey M. Zubkov
%A Kseniya A. Kolesnikova
%T A Markov chain with number-theoretic limit distribution
%J Diskretnaya Matematika
%D 2015
%P 17-24
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/
%G ru
%F DM_2015_27_3_a1
Andrey M. Zubkov; Kseniya A. Kolesnikova. A Markov chain with number-theoretic limit distribution. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 17-24. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a1/

[1] Salem R., “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl

[2] Gelfond A., Ischislenie konechnykh raznostei, GIFML, Moskva, 1959 | MR

[3] Celler F., Leedham-Green C.R., Murray S., Niemeyer A., O'Brien E.A., “Generating random elements of a finite group”, Comm. Alg., 23 (1995), 4931–4948 | DOI | MR | Zbl

[4] Diaconis P., Saloff-Coste L., “Walks on generating sets of Abelian groups”, Probab. Theory Relat. Fields, 105 (1996), 393–421 | DOI | MR | Zbl

[5] Lubotzky A., Pak I., “The product replacement algorithm and Kazdan's property (T)”, J. Amer. Math. Soc., 14:2 (2000), 347–363 | DOI | MR