Characterization of almost perfect nonlinear functions in terms of subfunctions
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with combinatorial description of almost perfect nonlinear functions (APN-functions). A complete characterization of $n$-place APN-functions in terms of $(n-1)$-place subfunctions is obtained. An $n$-place function is shown to be an APN-function if and only if each of its $(n-1)$-place subfunctions is either an APN-function or has the differential uniformity $4$ and the admissibility conditions hold. A detailed characterization of 2, 3 or 4-place APN-functions is presented.
Keywords: vectorial Boolean function, differential uniformity, APN-function, characterization.
@article{DM_2015_27_3_a0,
     author = {A. A. Gorodilova},
     title = {Characterization of almost perfect nonlinear functions in terms of subfunctions},
     journal = {Diskretnaya Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - Characterization of almost perfect nonlinear functions in terms of subfunctions
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 3
EP  - 16
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/
LA  - ru
ID  - DM_2015_27_3_a0
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T Characterization of almost perfect nonlinear functions in terms of subfunctions
%J Diskretnaya Matematika
%D 2015
%P 3-16
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/
%G ru
%F DM_2015_27_3_a0
A. A. Gorodilova. Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/