Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2015_27_3_a0, author = {A. A. Gorodilova}, title = {Characterization of almost perfect nonlinear functions in terms of subfunctions}, journal = {Diskretnaya Matematika}, pages = {3--16}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/} }
A. A. Gorodilova. Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/
[1] Glukhov M. M., “O matritsakh perekhodov raznostei pri ispolzovanii nekotorykh modulyarnykh grupp”, Matematicheskie voprosy kriptografii, 4:4 (2013), 27–47 | MR
[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20
[3] Bending T. D., Fon-der-Flaass D., “Crooked functions, bent functions, and distance regular graphs”, Electron. J. Comb., 5 (1998) | MR | Zbl
[4] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl
[5] Brinkman M., Leander G., “On the classification of APN functions up to dimension five ”, Proc. Int. Workshop on Coding and Cryptography 2007 (Versailles, France, 2007), 39–48 | MR
[6] Budaghyan L., Construction and analysis of cryptographic functions, Habilitation Thesis, Univ. of Paris 8, Sept. 2013
[7] Carlet C., “Open Questions on Nonlinearity and on APN Functions”, Arithmetic of Finite Fields, Lecture Notes in Computer Science, 9061 (2015), 83–107 | DOI
[8] Carlet C., Vectorial Boolean functions for cryptography, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, 2010 http://www.math.univ-paris13.fr/~carlet/pubs.html
[9] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15:2 (1998), 125–156 | DOI | MR | Zbl
[10] Charpin P., “On almost perfect nonlinear functions over $F_2^n$”, IEEE Trans. Inf. Theory, 52:9 (2006), 4160–4170 | DOI | MR | Zbl
[11] Daemen J., Rijmen V., The Design of Rijdael: AES — Advanced Encryption Standard, Springer, 2002, 256 pp. | MR
[12] Dillon J. F., “APN polynomials: an update”, Proc. 9th Int. Conf. Finite Fields and Appl. (Dublin, Ireland, July 2009) http://mathsci.ucd.ie/~gmg/Fq9Talks/Dillon.pdf
[13] Dobbertin H., “Almost perfect nonlinear power functions on $GF(2^n)$: a new class for $n$ divisible by $5$”, Proc. of Finite Fields and Appl. Fq5, Springer-Verlag, Berlin, Germany, 2000, 113–121 | MR
[14] Dobbertin H., “Almost perfect nonlinear power functions over GF(2n): the Niho case”, Inf. and Comput., 151:1-2 (1999), 57-72 | DOI | MR | Zbl
[15] Edel Y., “On quadratic APN functions and dimensional dual hyperovals”, Designs, Codes and Cryptography, 57:1 (2010), 35–44 | DOI | MR | Zbl
[16] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64 | DOI | MR | Zbl
[17] Nyberg K., Knudsen L. R., “Provable security against a differential attack”, J. Cryptology, 8:1 (1995), 27–37 | DOI | MR | Zbl
[18] Yoshiara Y., “Notes on APN functions, semibiplanes and dimensional dual hyperovals”, Designs, Codes and Cryptography, 56:2-3 (2010), 197–218 | DOI | MR | Zbl
[19] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Designs, Codes and Cryptography, 73:2 (2014), 587–600 | DOI | MR | Zbl