Characterization of almost perfect nonlinear functions in terms of subfunctions
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with combinatorial description of almost perfect nonlinear functions (APN-functions). A complete characterization of $n$-place APN-functions in terms of $(n-1)$-place subfunctions is obtained. An $n$-place function is shown to be an APN-function if and only if each of its $(n-1)$-place subfunctions is either an APN-function or has the differential uniformity $4$ and the admissibility conditions hold. A detailed characterization of 2, 3 or 4-place APN-functions is presented.
Keywords:
vectorial Boolean function, differential uniformity, APN-function, characterization.
@article{DM_2015_27_3_a0,
author = {A. A. Gorodilova},
title = {Characterization of almost perfect nonlinear functions in terms of subfunctions},
journal = {Diskretnaya Matematika},
pages = {3--16},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/}
}
A. A. Gorodilova. Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/