Characterization of almost perfect nonlinear functions in terms of subfunctions
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with combinatorial description of almost perfect nonlinear functions (APN-functions). A complete characterization of $n$-place APN-functions in terms of $(n-1)$-place subfunctions is obtained. An $n$-place function is shown to be an APN-function if and only if each of its $(n-1)$-place subfunctions is either an APN-function or has the differential uniformity $4$ and the admissibility conditions hold. A detailed characterization of 2, 3 or 4-place APN-functions is presented.
Keywords: vectorial Boolean function, differential uniformity, APN-function, characterization.
@article{DM_2015_27_3_a0,
     author = {A. A. Gorodilova},
     title = {Characterization of almost perfect nonlinear functions in terms of subfunctions},
     journal = {Diskretnaya Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - Characterization of almost perfect nonlinear functions in terms of subfunctions
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 3
EP  - 16
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/
LA  - ru
ID  - DM_2015_27_3_a0
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T Characterization of almost perfect nonlinear functions in terms of subfunctions
%J Diskretnaya Matematika
%D 2015
%P 3-16
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/
%G ru
%F DM_2015_27_3_a0
A. A. Gorodilova. Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a0/

[1] Glukhov M. M., “O matritsakh perekhodov raznostei pri ispolzovanii nekotorykh modulyarnykh grupp”, Matematicheskie voprosy kriptografii, 4:4 (2013), 27–47 | MR

[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20

[3] Bending T. D., Fon-der-Flaass D., “Crooked functions, bent functions, and distance regular graphs”, Electron. J. Comb., 5 (1998) | MR | Zbl

[4] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl

[5] Brinkman M., Leander G., “On the classification of APN functions up to dimension five ”, Proc. Int. Workshop on Coding and Cryptography 2007 (Versailles, France, 2007), 39–48 | MR

[6] Budaghyan L., Construction and analysis of cryptographic functions, Habilitation Thesis, Univ. of Paris 8, Sept. 2013

[7] Carlet C., “Open Questions on Nonlinearity and on APN Functions”, Arithmetic of Finite Fields, Lecture Notes in Computer Science, 9061 (2015), 83–107 | DOI

[8] Carlet C., Vectorial Boolean functions for cryptography, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, 2010 http://www.math.univ-paris13.fr/~carlet/pubs.html

[9] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15:2 (1998), 125–156 | DOI | MR | Zbl

[10] Charpin P., “On almost perfect nonlinear functions over $F_2^n$”, IEEE Trans. Inf. Theory, 52:9 (2006), 4160–4170 | DOI | MR | Zbl

[11] Daemen J., Rijmen V., The Design of Rijdael: AES — Advanced Encryption Standard, Springer, 2002, 256 pp. | MR

[12] Dillon J. F., “APN polynomials: an update”, Proc. 9th Int. Conf. Finite Fields and Appl. (Dublin, Ireland, July 2009) http://mathsci.ucd.ie/~gmg/Fq9Talks/Dillon.pdf

[13] Dobbertin H., “Almost perfect nonlinear power functions on $GF(2^n)$: a new class for $n$ divisible by $5$”, Proc. of Finite Fields and Appl. Fq5, Springer-Verlag, Berlin, Germany, 2000, 113–121 | MR

[14] Dobbertin H., “Almost perfect nonlinear power functions over GF(2n): the Niho case”, Inf. and Comput., 151:1-2 (1999), 57-72 | DOI | MR | Zbl

[15] Edel Y., “On quadratic APN functions and dimensional dual hyperovals”, Designs, Codes and Cryptography, 57:1 (2010), 35–44 | DOI | MR | Zbl

[16] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64 | DOI | MR | Zbl

[17] Nyberg K., Knudsen L. R., “Provable security against a differential attack”, J. Cryptology, 8:1 (1995), 27–37 | DOI | MR | Zbl

[18] Yoshiara Y., “Notes on APN functions, semibiplanes and dimensional dual hyperovals”, Designs, Codes and Cryptography, 56:2-3 (2010), 197–218 | DOI | MR | Zbl

[19] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Designs, Codes and Cryptography, 73:2 (2014), 587–600 | DOI | MR | Zbl