On regular hypergraphs with high girth and high chromatic number
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with an extremal problem of combinatorial analysis on finding the minimal possible number of edges in an $n$-regular hypergraph with chromatic number greater than $r$ and girth greater than $s$. A new lower estimate of this extremal value is obtained and a number of related results is proved.
Keywords:
hypergraph, colouring of hypergraphs, sparse hypergraphs, random recolouring method, girth of a hypergraph.
@article{DM_2015_27_2_a7,
author = {A. E. Khuzieva and D. A. Shabanov},
title = {On regular hypergraphs with high girth and high chromatic number},
journal = {Diskretnaya Matematika},
pages = {112--133},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/}
}
A. E. Khuzieva; D. A. Shabanov. On regular hypergraphs with high girth and high chromatic number. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/