Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2015_27_2_a7, author = {A. E. Khuzieva and D. A. Shabanov}, title = {On regular hypergraphs with high girth and high chromatic number}, journal = {Diskretnaya Matematika}, pages = {112--133}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/} }
A. E. Khuzieva; D. A. Shabanov. On regular hypergraphs with high girth and high chromatic number. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/
[1] Erdős P., Lovász L., “Problems and results on 3-chromatic hypergraphs and some related questions”, Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai, 10, North Holland, Amsterdam, 1973, 609–627
[2] Raigorodskii A. M., Shabanov D. A., “Zadacha Erdesha – Khainala o raskraskakh gipergrafov, ee obobscheniya i smezhnye problemy”, Uspekhi matematicheskikh nauk, 66:5 (2011), 109–182 | DOI
[3] Kostochka A. V., Rődl V., “Constructions of sparse uniform hypergraphs with high chromatic number”, Random Structures and Algorithms, 36:1 (2010), 46–56 | DOI
[4] Kozik J., Shabanov D. A., “Improved algorithms for colorings of simple hypergraphs and applications”, arXiv:1409.6921
[5] Kostochka A. V., Mubayi D., Rődl V., Tetali P., “On the chromatic number of set systems”, Random Struct. Algor., 19:2 (2001), 87–98 | DOI
[6] Sauer N., “On the existence of regular $n$-graphs with given girth”, J. Comb. Theory, Ser. B, 9 (1970), 144–147 | DOI
[7] Kostochka A. V., Kubmhat M., “Coloring uniform hypergraphs with few edges”, Random Struct. Algor., 35:3 (2009), 348–368 | DOI
[8] Kupavskii A. B., Shabanov D. A., “Raskraski odnorodnykh gipergrafov s bolshim obkhvatom”, Doklady Akademii Nauk, 443:4 (2012), 422–426
[9] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007