On regular hypergraphs with high girth and high chromatic number
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with an extremal problem of combinatorial analysis on finding the minimal possible number of edges in an $n$-regular hypergraph with chromatic number greater than $r$ and girth greater than $s$. A new lower estimate of this extremal value is obtained and a number of related results is proved.
Keywords: hypergraph, colouring of hypergraphs, sparse hypergraphs, random recolouring method, girth of a hypergraph.
@article{DM_2015_27_2_a7,
     author = {A. E. Khuzieva and D. A. Shabanov},
     title = {On regular hypergraphs with high girth and high chromatic number},
     journal = {Diskretnaya Matematika},
     pages = {112--133},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/}
}
TY  - JOUR
AU  - A. E. Khuzieva
AU  - D. A. Shabanov
TI  - On regular hypergraphs with high girth and high chromatic number
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 112
EP  - 133
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/
LA  - ru
ID  - DM_2015_27_2_a7
ER  - 
%0 Journal Article
%A A. E. Khuzieva
%A D. A. Shabanov
%T On regular hypergraphs with high girth and high chromatic number
%J Diskretnaya Matematika
%D 2015
%P 112-133
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/
%G ru
%F DM_2015_27_2_a7
A. E. Khuzieva; D. A. Shabanov. On regular hypergraphs with high girth and high chromatic number. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/

[1] Erdős P., Lovász L., “Problems and results on 3-chromatic hypergraphs and some related questions”, Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai, 10, North Holland, Amsterdam, 1973, 609–627

[2] Raigorodskii A. M., Shabanov D. A., “Zadacha Erdesha – Khainala o raskraskakh gipergrafov, ee obobscheniya i smezhnye problemy”, Uspekhi matematicheskikh nauk, 66:5 (2011), 109–182 | DOI

[3] Kostochka A. V., Rődl V., “Constructions of sparse uniform hypergraphs with high chromatic number”, Random Structures and Algorithms, 36:1 (2010), 46–56 | DOI

[4] Kozik J., Shabanov D. A., “Improved algorithms for colorings of simple hypergraphs and applications”, arXiv:1409.6921

[5] Kostochka A. V., Mubayi D., Rődl V., Tetali P., “On the chromatic number of set systems”, Random Struct. Algor., 19:2 (2001), 87–98 | DOI

[6] Sauer N., “On the existence of regular $n$-graphs with given girth”, J. Comb. Theory, Ser. B, 9 (1970), 144–147 | DOI

[7] Kostochka A. V., Kubmhat M., “Coloring uniform hypergraphs with few edges”, Random Struct. Algor., 35:3 (2009), 348–368 | DOI

[8] Kupavskii A. B., Shabanov D. A., “Raskraski odnorodnykh gipergrafov s bolshim obkhvatom”, Doklady Akademii Nauk, 443:4 (2012), 422–426

[9] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007