On regular hypergraphs with high girth and high chromatic number
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with an extremal problem of combinatorial analysis on finding the minimal possible number of edges in an $n$-regular hypergraph with chromatic number greater than $r$ and girth greater than $s$. A new lower estimate of this extremal value is obtained and a number of related results is proved.
Keywords: hypergraph, colouring of hypergraphs, sparse hypergraphs, random recolouring method, girth of a hypergraph.
@article{DM_2015_27_2_a7,
     author = {A. E. Khuzieva and D. A. Shabanov},
     title = {On regular hypergraphs with high girth and high chromatic number},
     journal = {Diskretnaya Matematika},
     pages = {112--133},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/}
}
TY  - JOUR
AU  - A. E. Khuzieva
AU  - D. A. Shabanov
TI  - On regular hypergraphs with high girth and high chromatic number
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 112
EP  - 133
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/
LA  - ru
ID  - DM_2015_27_2_a7
ER  - 
%0 Journal Article
%A A. E. Khuzieva
%A D. A. Shabanov
%T On regular hypergraphs with high girth and high chromatic number
%J Diskretnaya Matematika
%D 2015
%P 112-133
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/
%G ru
%F DM_2015_27_2_a7
A. E. Khuzieva; D. A. Shabanov. On regular hypergraphs with high girth and high chromatic number. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 112-133. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a7/