Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2015_27_2_a6, author = {A. A. Tuganbaev}, title = {Automorphism-extendable modules}, journal = {Diskretnaya Matematika}, pages = {106--111}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a6/} }
A. A. Tuganbaev. Automorphism-extendable modules. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 106-111. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a6/
[1] Alahmadi A., Er N, Jain S.K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Australian Math. Soc., 79:3 (2005), 2265-2271 | DOI
[2] Er N., Singh S., Srivastava A.K., “Rings and modules which are stable under automorphisms of their injective hulls”, J. Algebra, 379 (2013), 223-229 | DOI
[3] Guil Asensio P.A., Srivastava A.K., “Automorphism-invariant modules satisfy the exchange property”, J. Algebra, 388 (2013), 101-106 | DOI
[4] Jain S.K., Singh S., “Quasi-injective and pseudo-injective modules”, Canadian Math. Bull., 18:3 (1975), 359-366 | DOI
[5] Lee T.K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 6:2 (2013)
[6] Singh S., Srivastava A.K., “Rings of invariant module type and automorphism-invariant modules”, Ring theory and its applications, 609, 299–311 | DOI
[7] Teply M.L., “Pseudo-injective modules which are not quasiinjective”, Proc. Amer. Math. Soc., 49:2 (1975), 305-310 | DOI
[8] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998
[9] Tuganbaev A.A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskret. matem., 25: 1 (2013), 144–151 | DOI
[10] Tuganbaev A.A., “Kharakteristicheskie podmoduli in'ektivnykh modulei”, Diskret. matem., 25:2 (2013), 85–90 | DOI
[11] Tuganbaev A.A., “Prodolzheniya avtomorfizmov podmodulei”, Fundamentalnaya i prikladnaya matematika, 18: 3 (2013), 179–198
[12] Tuganbaev A.A., “Kharakteristicheskie podmoduli in'ektivnykh modulei nad strogo pervichnymi koltsami”, Diskret. matem., 26: 3 (2014), 121–126 | DOI