Functions without short implicents.Part I: lower estimates of weights
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 94-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with $n$-place Boolean functions not admitting implicents of $k$ variables, $1\le k$. Estimates for the minimal possible weight $w\left( {n,\;k} \right)$ of such functions are obtained. It is shown that $w\left( {n,\;1} \right) = 2$, $n = 2,3,...$, and $w\left( {n,\;2} \right)\sim{\log _2}n$ as $n \to \infty$, and moreover, for $k > 2$ there exists ${n_0}$ such that $w\left( {n,\;k} \right) > {2^{k - 2}} \cdot {\log _2}n$ for all $n > {n_0}$.
Keywords: Boolean function, implicent, combinatorially complete matrix.
@article{DM_2015_27_2_a5,
     author = {Pavel V. Roldugin and Alexey V. Tarasov},
     title = {Functions without short {implicents.Part} {I:} lower estimates of weights},
     journal = {Diskretnaya Matematika},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a5/}
}
TY  - JOUR
AU  - Pavel V. Roldugin
AU  - Alexey V. Tarasov
TI  - Functions without short implicents.Part I: lower estimates of weights
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 94
EP  - 105
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a5/
LA  - ru
ID  - DM_2015_27_2_a5
ER  - 
%0 Journal Article
%A Pavel V. Roldugin
%A Alexey V. Tarasov
%T Functions without short implicents.Part I: lower estimates of weights
%J Diskretnaya Matematika
%D 2015
%P 94-105
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_2_a5/
%G ru
%F DM_2015_27_2_a5
Pavel V. Roldugin; Alexey V. Tarasov. Functions without short implicents.Part I: lower estimates of weights. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 94-105. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a5/