Estimates for distribution of the minimal distance of a random linear code
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 45-55
Voir la notice de l'article provenant de la source Math-Net.Ru
The distribution function of the minimum distance (the minimum weight of nonzero codewords) of a random linear code over a finite field is studied. Expicit bounds in the form of inequalities and asymptotic estimates for this distribution function are obtained.
Keywords:
minimum distance of a linear code, explicit estimates of distribution functions, asymptotic estimates of distribution functions.
@article{DM_2015_27_2_a2,
author = {V. A. Kopyttsev and V. G. Mikhailov},
title = {Estimates for distribution of the minimal distance of a random linear code},
journal = {Diskretnaya Matematika},
pages = {45--55},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/}
}
TY - JOUR AU - V. A. Kopyttsev AU - V. G. Mikhailov TI - Estimates for distribution of the minimal distance of a random linear code JO - Diskretnaya Matematika PY - 2015 SP - 45 EP - 55 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/ LA - ru ID - DM_2015_27_2_a2 ER -
V. A. Kopyttsev; V. G. Mikhailov. Estimates for distribution of the minimal distance of a random linear code. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 45-55. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/