Estimates for distribution of the minimal distance of a random linear code
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution function of the minimum distance (the minimum weight of nonzero codewords) of a random linear code over a finite field is studied. Expicit bounds in the form of inequalities and asymptotic estimates for this distribution function are obtained.
Keywords: minimum distance of a linear code, explicit estimates of distribution functions, asymptotic estimates of distribution functions.
@article{DM_2015_27_2_a2,
     author = {V. A. Kopyttsev and V. G. Mikhailov},
     title = {Estimates for distribution of the minimal distance of a random linear code},
     journal = {Diskretnaya Matematika},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
AU  - V. G. Mikhailov
TI  - Estimates for distribution of the minimal distance of a random linear code
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 45
EP  - 55
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/
LA  - ru
ID  - DM_2015_27_2_a2
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%A V. G. Mikhailov
%T Estimates for distribution of the minimal distance of a random linear code
%J Diskretnaya Matematika
%D 2015
%P 45-55
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/
%G ru
%F DM_2015_27_2_a2
V. A. Kopyttsev; V. G. Mikhailov. Estimates for distribution of the minimal distance of a random linear code. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 45-55. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a2/

[1] Piterson U., Ueldon E., Kody, ispravlyayuschie oshibki, M.: Mir, 1976

[2] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, M.: Svyaz, 1979

[3] Sidelnikov V. M., Teoriya kodirovaniya. Spravochnik po printsipam i metodam kodirovaniya, M.: MGU, 2006

[4] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3-21 | DOI

[5] Kopyttsev V. A., Mikhailov V. G., “Yavnye otsenki tochnosti puassonovskoi approksimatsii dlya raspredeleniya chisla reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 6:1 (2015), 57-79

[6] Zubkov A. M., Kruglov V. I., “Momentnye kharakteristiki vesov vektorov v sluchainykh dvoichnykh kodakh”, Matematicheskie voprosy kriptografii, 3:4 (2012), 55-70

[7] Zubkov A. M., Kruglov V. I., “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov nad $GF(p)$”, Matematicheskie voprosy kriptografii, 5:1 (2014), 27-38

[8] Borovkov A. A., Teoriya veroyatnostei, Nauka, Moskva, 1976