A generalization of Ore's theorem on irreducible polynomials over a finite field
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 108-110
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary prime power $q$, a criterion for irreducibility of a polynomial of the form $$ F(x) = x^{q^{m}-1}+a_{m-1}x^{q^{m-1}-1}+\ldots+a_1x^{q-1}+a_0, \ a_0\neq 0, $$ over the field $K = GF(q^t)$ is established.
Keywords:
irreducible polynomials, irreducibility criterion.
@article{DM_2015_27_1_a7,
author = {A. A. Nechaev and V. O. Popov},
title = {A generalization of {Ore's} theorem on irreducible polynomials over a finite field},
journal = {Diskretnaya Matematika},
pages = {108--110},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a7/}
}
TY - JOUR AU - A. A. Nechaev AU - V. O. Popov TI - A generalization of Ore's theorem on irreducible polynomials over a finite field JO - Diskretnaya Matematika PY - 2015 SP - 108 EP - 110 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2015_27_1_a7/ LA - ru ID - DM_2015_27_1_a7 ER -
A. A. Nechaev; V. O. Popov. A generalization of Ore's theorem on irreducible polynomials over a finite field. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 108-110. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a7/