Rings whose finitely generated right ideals are quasi-projective
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154
Voir la notice de l'article provenant de la source Math-Net.Ru
An invariant ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module may be extended to an endomorphism of the module $A_A$. An invariant semiprime ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module.
Keywords:
arithmetical ring, quasi-projective module, skew-projective module, integrally closed module, distributive module.
@article{DM_2015_27_1_a10,
author = {A. A. Tuganbaev},
title = {Rings whose finitely generated right ideals are quasi-projective},
journal = {Diskretnaya Matematika},
pages = {146--154},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/}
}
A. A. Tuganbaev. Rings whose finitely generated right ideals are quasi-projective. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/