Rings whose finitely generated right ideals are quasi-projective
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154
An invariant ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module may be extended to an endomorphism of the module $A_A$. An invariant semiprime ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module.
Keywords:
arithmetical ring, skew-projective module, integrally closed module, distributive module.
Mots-clés : quasi-projective module
Mots-clés : quasi-projective module
@article{DM_2015_27_1_a10,
author = {A. A. Tuganbaev},
title = {Rings whose finitely generated right ideals are quasi-projective},
journal = {Diskretnaya Matematika},
pages = {146--154},
year = {2015},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/}
}
A. A. Tuganbaev. Rings whose finitely generated right ideals are quasi-projective. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/
[1] Abuhlail J., Jarrar M., Kabbaj S., “Commutative rings in which every finitely generated ideal is quasi-projective”, J. Pure Appl. Algebra, 215 (2011), 2504–2511 | DOI | MR | Zbl
[2] Tuganbaev A. A., “Multiplication modules”, J. Math. Sci. (New York), 123:2 (2004), 3839–3905 | DOI | MR | Zbl
[3] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl
[4] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl