Rings whose finitely generated right ideals are quasi-projective
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

An invariant ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module may be extended to an endomorphism of the module $A_A$. An invariant semiprime ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module.
Keywords: arithmetical ring, quasi-projective module, skew-projective module, integrally closed module, distributive module.
@article{DM_2015_27_1_a10,
     author = {A. A. Tuganbaev},
     title = {Rings whose finitely generated right ideals are quasi-projective},
     journal = {Diskretnaya Matematika},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings whose finitely generated right ideals are quasi-projective
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 146
EP  - 154
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/
LA  - ru
ID  - DM_2015_27_1_a10
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings whose finitely generated right ideals are quasi-projective
%J Diskretnaya Matematika
%D 2015
%P 146-154
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/
%G ru
%F DM_2015_27_1_a10
A. A. Tuganbaev. Rings whose finitely generated right ideals are quasi-projective. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 146-154. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a10/

[1] Abuhlail J., Jarrar M., Kabbaj S., “Commutative rings in which every finitely generated ideal is quasi-projective”, J. Pure Appl. Algebra, 215 (2011), 2504–2511 | DOI | MR | Zbl

[2] Tuganbaev A. A., “Multiplication modules”, J. Math. Sci. (New York), 123:2 (2004), 3839–3905 | DOI | MR | Zbl

[3] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl

[4] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl