Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 91-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $A$ of elements of a group $G$ is $(k,l)$-sum-free if $A$ does not contains solutions of the equation $x_1 + \ldots + x_k=y_1 + \ldots + y_l$. We have obtained asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group.
Keywords: sum-free set, characteristic function, group, progression, coset.
@article{DM_2014_26_4_a8,
     author = {V. G. Sargsyan},
     title = {Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an {Abelian} group},
     journal = {Diskretnaya Matematika},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 91
EP  - 99
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/
LA  - ru
ID  - DM_2014_26_4_a8
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
%J Diskretnaya Matematika
%D 2014
%P 91-99
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/
%G ru
%F DM_2014_26_4_a8
V. G. Sargsyan. Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 91-99. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/

[1] Cameron P.J., Erdös P., “On the number of sets of integers with various properties”, J. Number Theory, 1990, 61–79 | MR | Zbl

[2] Calkin N.J., “On the number of sum-free set”, Bull. London Math. Soc., 22 (1990), 140–144 | DOI | MR

[3] Alon N., “Independent sets in regular graphs and sum-free subsets of Abelian groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl

[4] Sapozhenko A. A., “Gipoteza Kamerona–Erdësha”, Dokl. RAN, 393:6 (2003), 749–752 | MR

[5] Green B., “The Cameron–Erdös conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl

[6] Sapozhenko A. A., “O chisle mnozhestv, svobodnykh ot summ, v abelevykh gruppakh”, Vestnik MGU, ser. 1. Matem., mekh., 2002, no. 4, 14–17 | MR | Zbl

[7] Lev V.F., Luczak T., Schoen T., “Sum-free sets in Abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl

[8] Lev V. F., Schoen T., “Cameron-Erdös modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl

[9] Green B., Ruzsa I., “Sum-free sets in Abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl

[10] Sapozhenko A.A., “Reshenie problemy Kamerona–Erdësha dlya grupp prostogo poryadka”, Vychisl. mat. i matem. fizika, 49:8 (2009), 1–7 | MR

[11] Calkin N.J., Taylor A.C., “Counting sets of integers, no $k$ of which sum to another”, J. Number Theory, 57 (1996), 323–327 | DOI | MR | Zbl

[12] Bilu Yu., “Sum-free sets and related sets”, Combinatorica, 18:4 (1998), 449–459 | DOI | MR | Zbl

[13] Calkin N.J., Thomson J.M., “Counting generalized sum-free sets”, J. Number Theory, 68 (1998), 151–160 | DOI | MR

[14] Schoen T., “A note on the number of $(k,l)$-sum–free sets”, Electronic J. Combinatorics, 7:1 (2000), 1–8 | MR

[15] Sargsyan V.G., “Asimptotika logarifma chisla mnozhestv, $(k,l)$-svobodnykh ot summ, v gruppakh prostogo poryadka”, Vestnik MGU, ser. 15. Vychisl. matem. i kibern., 2012, no. 2

[16] Lev V. F., “Sharp estimates for the number of sum-free sets”, J. fur die reine und angew. Math., 555 (2003) | MR

[17] Green B., “A Szemerédi-type regularity lemma in Abelian groups”, Geom. and Funct. Anal, 15:2 (2005), 340–376 | DOI | MR | Zbl

[18] Bajnok B., “On the maximum size of a $(k,l)$-sum-free subset of an Abelian group”, J. Number Theory, 5:6 (2009), 953–971 | DOI | MR | Zbl

[19] Sargsyan V. G., “O maksimalnoi moschnosti mnozhestva, $k$-svobodnogo ot nulya, v abelevoi gruppe”, Diskr. analiz i issled. operatsii, 20:3 (2013), 45–64 | MR