Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 91-99

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $A$ of elements of a group $G$ is $(k,l)$-sum-free if $A$ does not contains solutions of the equation $x_1 + \ldots + x_k=y_1 + \ldots + y_l$. We have obtained asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group.
Keywords: sum-free set, characteristic function, group, progression, coset.
@article{DM_2014_26_4_a8,
     author = {V. G. Sargsyan},
     title = {Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an {Abelian} group},
     journal = {Diskretnaya Matematika},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 91
EP  - 99
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/
LA  - ru
ID  - DM_2014_26_4_a8
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group
%J Diskretnaya Matematika
%D 2014
%P 91-99
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/
%G ru
%F DM_2014_26_4_a8
V. G. Sargsyan. Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 91-99. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a8/