Investigation of the cryptosystem MST$_3$ based on a Suzuki 2-group
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 66-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a previously proposed attack against the public key cryptosystem MST$_3$ based on a Suzuki 2-group. We present a theoretical foundation of practical results obtained by the authors of the considered attack, and show that in the general case this attack may have significant complexity. Besides that we investigate the set of logarithmic signatures of the centre of a Suzuki 2-group and estimate the cardinality of this set.
Keywords: MST3, Suzuki 2-group, logarithmic signatures.
@article{DM_2014_26_4_a7,
     author = {A. S. Rybkin},
     title = {Investigation of the cryptosystem {MST}$_3$ based on a {Suzuki} 2-group},
     journal = {Diskretnaya Matematika},
     pages = {66--90},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/}
}
TY  - JOUR
AU  - A. S. Rybkin
TI  - Investigation of the cryptosystem MST$_3$ based on a Suzuki 2-group
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 66
EP  - 90
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/
LA  - ru
ID  - DM_2014_26_4_a7
ER  - 
%0 Journal Article
%A A. S. Rybkin
%T Investigation of the cryptosystem MST$_3$ based on a Suzuki 2-group
%J Diskretnaya Matematika
%D 2014
%P 66-90
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/
%G ru
%F DM_2014_26_4_a7
A. S. Rybkin. Investigation of the cryptosystem MST$_3$ based on a Suzuki 2-group. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 66-90. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/

[1] Magliveras S.S., “A cryptosystem from logarithmic signatures of finite groups”, Proc. 29'th Midwest Symp. Circuits and Systems, Elsevier Science Ltd, 1986, 972–975

[2] Magliveras S.S., Stinson D.R., Trung van T., “New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups”, J. Cryptology, 15:4 (2002), 285–297 | DOI | MR | Zbl

[3] Vasco M.I.G., Steinwandt R., “Obstacles in two public key cryptosystems based on group factorizations”, Tatra Mount. Math. Publ., 25 (2002), 23–37 | MR | Zbl

[4] Lempken W., Trung van T., Magliveras S.S., Wei W., “A public key cryptosystem based on non-Abelian finite groups”, J. Cryptology, 22:1 (2009), 62–74 | DOI | MR | Zbl

[5] Magliveras S.S., Svaba P., Trung van T., Zajac P., “On the security of a realization of cryptosystem MST3”, Tatra Mount. Math. Publ., 41 (2008), 65–78 | MR | Zbl

[6] Blackburn S.R., Cid C., Mullan C., “Cryptanalysis of the MST3 public key cryptosystem”, J. Math. Cryptology, 3:4 (2009), 321–338 | DOI | MR | Zbl

[7] Vasco M.I.G., Pozo del A.L.P., Duarte P.T., “A note on the security of MST3”, Des. Codes and Cryptography, 55:2-3 (2010), 189–200 | DOI | MR | Zbl

[8] Svaba P., Trung van T., “Public key cryptosystem MST3: cryptanalysis and realization”, J. Math. Cryptology, 4:3 (2010), 271–315 | DOI | MR | Zbl

[9] Higman G., “Suzuki 2-groups”, Illinois J. Math., 7:1 (1963), 79–96 | MR | Zbl

[10] Svaba P., Trung van T., Wolf P., “Logarithmic signatures for Abelian groups and their factorization”, Tatra Mount. Math. Publ., 57:1 (2013), 21–33 | MR | Zbl

[11] Gordon B., McIntosh R.J., “Some eighth order mock theta functions”, J. London Math. Soc., 62:2 (2000), 321–335 | DOI | MR | Zbl