Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2014_26_4_a7, author = {A. S. Rybkin}, title = {Investigation of the cryptosystem {MST}$_3$ based on a {Suzuki} 2-group}, journal = {Diskretnaya Matematika}, pages = {66--90}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/} }
A. S. Rybkin. Investigation of the cryptosystem MST$_3$ based on a Suzuki 2-group. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 66-90. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a7/
[1] Magliveras S.S., “A cryptosystem from logarithmic signatures of finite groups”, Proc. 29'th Midwest Symp. Circuits and Systems, Elsevier Science Ltd, 1986, 972–975
[2] Magliveras S.S., Stinson D.R., Trung van T., “New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups”, J. Cryptology, 15:4 (2002), 285–297 | DOI | MR | Zbl
[3] Vasco M.I.G., Steinwandt R., “Obstacles in two public key cryptosystems based on group factorizations”, Tatra Mount. Math. Publ., 25 (2002), 23–37 | MR | Zbl
[4] Lempken W., Trung van T., Magliveras S.S., Wei W., “A public key cryptosystem based on non-Abelian finite groups”, J. Cryptology, 22:1 (2009), 62–74 | DOI | MR | Zbl
[5] Magliveras S.S., Svaba P., Trung van T., Zajac P., “On the security of a realization of cryptosystem MST3”, Tatra Mount. Math. Publ., 41 (2008), 65–78 | MR | Zbl
[6] Blackburn S.R., Cid C., Mullan C., “Cryptanalysis of the MST3 public key cryptosystem”, J. Math. Cryptology, 3:4 (2009), 321–338 | DOI | MR | Zbl
[7] Vasco M.I.G., Pozo del A.L.P., Duarte P.T., “A note on the security of MST3”, Des. Codes and Cryptography, 55:2-3 (2010), 189–200 | DOI | MR | Zbl
[8] Svaba P., Trung van T., “Public key cryptosystem MST3: cryptanalysis and realization”, J. Math. Cryptology, 4:3 (2010), 271–315 | DOI | MR | Zbl
[9] Higman G., “Suzuki 2-groups”, Illinois J. Math., 7:1 (1963), 79–96 | MR | Zbl
[10] Svaba P., Trung van T., Wolf P., “Logarithmic signatures for Abelian groups and their factorization”, Tatra Mount. Math. Publ., 57:1 (2013), 21–33 | MR | Zbl
[11] Gordon B., McIntosh R.J., “Some eighth order mock theta functions”, J. London Math. Soc., 62:2 (2000), 321–335 | DOI | MR | Zbl