An approach to the classification of Boolean bent functions of the nonlinearity degree 3
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an approach to the classification of $n$-variable Boolean bent functions of the nonlinearity degree 3. We utilize the apparatus of bent rectangles introduced by S. V. Agievich. This apparatus was used for the classification of $8$-variable Boolean cubic bent functions. The results of our research allow to construct cubic bent functions that depend on an arbitrary even number of variables; the construction is based on well studied quadratic bent functions.
Keywords: bent functions, bent rectangles, quadratic forms, affine transformations.
@article{DM_2014_26_4_a6,
     author = {V. I. Nozdrunov},
     title = {An approach to the classification of {Boolean} bent functions of the nonlinearity degree 3},
     journal = {Diskretnaya Matematika},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a6/}
}
TY  - JOUR
AU  - V. I. Nozdrunov
TI  - An approach to the classification of Boolean bent functions of the nonlinearity degree 3
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 59
EP  - 65
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a6/
LA  - ru
ID  - DM_2014_26_4_a6
ER  - 
%0 Journal Article
%A V. I. Nozdrunov
%T An approach to the classification of Boolean bent functions of the nonlinearity degree 3
%J Diskretnaya Matematika
%D 2014
%P 59-65
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a6/
%G ru
%F DM_2014_26_4_a6
V. I. Nozdrunov. An approach to the classification of Boolean bent functions of the nonlinearity degree 3. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 59-65. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a6/

[1] Agievich S.V., “On the representation of bent functions by bent rectangles”, Probabilistic Methods in Discrete Mathematics, Proc. First Intern. Petrozavodsk Conf., Utrecht, Boston, 2002, 121–135

[2] Agievich S.V., “On the affine classification of cubic bent functions”, Tr. Inst. Mat., 14:1 (2006), 3–11

[3] Lidl R., Nidereiter Kh., Konechnye polya., per. s angl., Mir, Moskva, 1989

[4] Logachev O.A., Salnikov A.A., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptografii, MTsNMO, Moskva, 2004

[5] Mak-Vilyams F.Dzh., Sloan N.Dzh.A., Teoriya kodov, ispravlyayuschikh oshibki, per. s angl., Svyaz, Moskva, 1979

[6] Cheremushkin A.V., “Metody affinnoi i lineinoi klassifikatsii dvoichnykh funktsii”, Tr. po diskr. matem., 4 (2001), 273–314