Images of subset of finite set under iterations of random mappings
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 43-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{N}$ be a set of $N$ elements and $F_1,F_2,\ldots$ be a sequence of random independent equiprobable mappings $\mathcal{N}\to\mathcal{N}$. For a subset $S_0\subset \mathcal{N},\,|S_0|=n$, we consider a sequence of its images $S_k=F_k(\ldots F_2(F_1(S_0))\ldots),\,k=1,2\ldots$, and a sequence of their unions $\Psi_k=S_1\cup\ldots\cup S_k,\,k=1,2\ldots$  An approach to the exact computation of distribution of $|S_k|$ and $|\Psi_k|$ for moderate values of $N$ is described. Two-sided inequalities for $\mathbf{M}|S_k|$ and $\mathbf{M}|\Psi_k|$ such that upper bound are asymptotically equivalent to lower ones for $N,n,k\to\infty, nk=o(N)$ are derived. The results are of interest for the analysis of time-memory tradeoff algorithms.
Keywords: iterations of random mappings, time-memory tradeoff algorithm.
@article{DM_2014_26_4_a4,
     author = {A. M. Zubkov and A. A. Serov},
     title = {Images of subset of finite set under iterations of random mappings},
     journal = {Diskretnaya Matematika},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a4/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - Images of subset of finite set under iterations of random mappings
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 43
EP  - 50
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a4/
LA  - ru
ID  - DM_2014_26_4_a4
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T Images of subset of finite set under iterations of random mappings
%J Diskretnaya Matematika
%D 2014
%P 43-50
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a4/
%G ru
%F DM_2014_26_4_a4
A. M. Zubkov; A. A. Serov. Images of subset of finite set under iterations of random mappings. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 43-50. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a4/

[1] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka. Fizmatlit, M., 1990, 503 pp. | MR

[2] Zubkov A.M., Shibanov O.K., “Vremya do ob'edineniya vsekh chastits pri ravnoveroyatnykh razmescheniyakh po posledovatelnosti sloev yacheek”, Matem. zametki, 85:3 (2009), 373–381 | DOI | MR | Zbl

[3] Kolchin V.F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp. | MR

[4] Kolchin V.F., Sevastyanov B.A., Chistyakov V.P., Sluchainye razmescheniya, Nauka, M., 1976, 224 pp. | MR

[5] Stepanov V.E., “O raspredelenii chisla vershin v sloyakh sluchainogo dereva”, Teoriya veroyatn. i primen., 14:1 (1969), 64–77 | MR

[6] Dalal A., Schmutz E., “Compositions of random functions on a finite set”, Electr. J. Comb., 9:R26 (2002) | MR | Zbl

[7] Flajolet P., Odlyzko A.M., “Random mapping statistics”, Advances in Cryptology, Proc. Eurocrypt'89, Lect. Notes Comput. Sci., 434, 1990, 329–354 | DOI | MR | Zbl

[8] Goh W.M.Y., Hitczenko P., Schmutz E., “Iterating random functions on a finite set”, 2014, 7 pp., arXiv: math/0207276v2

[9] Harris B., “Probability distributions related to random mappings”, Ann. Math. Statist., 31:2 (1960), 1045–1062 | DOI | MR | Zbl

[10] Hellman M.E., “A cryptanalytic time–memory trade-off”, IEEE Trans. Inf. Theory, 1980, 401–406 | DOI | MR | Zbl

[11] Hong J., Ma D., “Success probability of the Hellman trade-off”, Inf. Process. Lett., 109:7 (2009), 347–351 | DOI | MR | Zbl

[12] Kingman J.F.C., “The coalescent”, Stoch.Proc. Appl., 13 (1982), 235–248 | DOI | MR | Zbl

[13] Kusuda K., Matsumoto T., “Optimization of time-memory trade-off cryptanalysis and its application to DES”, IEICE Trans. on Fundamentals, 1:E-79A (1996), 35–48

[14] McSweeney J.K., Pittel B.G., “Expected coalescence time for a nonuniform allocation process”, Adv. Appl. Probab., 40:4 (2008), 1002–1032 | DOI | MR | Zbl

[15] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, Lect. Notes Comput. Sci., 2729, 2003, 617–630 | DOI | MR | Zbl

[16] Pilshchikov D.V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton-Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108

[17] Rubin H., Sitgreaves R., Probability distributions related to random transformations of a finite set, Tech. report. No19A, Appl. math. and statist. lab., Stanford Univ., 1954