Weighing algorithms of classification and identification of situations
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 119-134
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper gives lower bounds for the minimum number $m$ of weighings that are necessary for identification of up to $t$ non-standard objects out of the total number of $n$ objects being tested. For the problem with fixed deviation of weights of non-standard objects we construct a perfect algorithms with parameters $n=11$, $m=5$, $t=2$ corresponding to the parameters of the ternary Virtakallio–Golay code. The non-existence of a perfect weighing code with such parameters is proved.
Keywords:
weighing, detection of false coins, classification algorithm.
@article{DM_2014_26_4_a11,
author = {A. M. Chudnov},
title = {Weighing algorithms of classification and identification of situations},
journal = {Diskretnaya Matematika},
pages = {119--134},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a11/}
}
A. M. Chudnov. Weighing algorithms of classification and identification of situations. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 119-134. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a11/