On groups of even orders with automorphisms generating recurrent sequences of the maximal period
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $f$ be an automorphism of the group $G$. The automorphism $f$ specifies a recurrent sequence $\left\{ a_i \right\}_0^\infty$ on the group $G$ by the rule $a_{i+1} = f(a_i)$. If $a_0$ is the initial element of the sequence, then the period of the sequence does not exceed the number of elements having the same order as $a_0$. Thus, it is interesting to find out whether there exist groups having automorphisms generating sequences with the largest possible period for any initial element. This work continues the study of groups possessing automorphisms of the maximal period. Earlier, the case of groups of odd orders was examined. It was established that such groups are necessarily Abelian, and their structure was completely described. This paper considers groups of even orders and completes the description of finite groups possessing automorphisms of the maximal period.
Keywords: groups, automorphisms, recurrence sequences.
@article{DM_2014_26_4_a1,
     author = {A. V. Akishin},
     title = {On groups of even orders with automorphisms generating recurrent sequences of the maximal period},
     journal = {Diskretnaya Matematika},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a1/}
}
TY  - JOUR
AU  - A. V. Akishin
TI  - On groups of even orders with automorphisms generating recurrent sequences of the maximal period
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 15
EP  - 22
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a1/
LA  - ru
ID  - DM_2014_26_4_a1
ER  - 
%0 Journal Article
%A A. V. Akishin
%T On groups of even orders with automorphisms generating recurrent sequences of the maximal period
%J Diskretnaya Matematika
%D 2014
%P 15-22
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a1/
%G ru
%F DM_2014_26_4_a1
A. V. Akishin. On groups of even orders with automorphisms generating recurrent sequences of the maximal period. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 15-22. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a1/

[1] Akishin A.V., “Gruppy s avtomorfizmami, porozhdayuschimi rekurrentnye posledovatelnosti maksimalnogo perioda”, Diskretnaya matematika, 26:1 (2014), 3–9 | DOI | MR

[2] Glukhov M.M., Larin S.V., “Abelevy i metabelevy gruppy s regulyarnymi avtomorfizmami i poluavtomorfizmami”, Matematicheskie zametki, 1:2 (1972), 727–738

[3] Kuzmin A.S., Kurakin V.L., Nechaev A.A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | MR | Zbl

[4] Kuzmin A.S., Marshalko G.B., Nechaev A.A., “Vosstanovlenie lineinoi rekurrenty nad primarnym koltsom vychetov po ee uslozhneniyu”, Matematicheskie voprosy kriptografii, 1:2 (2010), 31–56 | MR

[5] Kuzmin A.S., Nechaev A.A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Uspekhi matematicheskikh nauk, 48:1 (1993), 167–168 | MR | Zbl

[6] Lidl R., Niderraiter G., Konechnye polya, tom 2, “Mir”, M., 1988 | MR | Zbl

[7] Makarenko M.Yu., Khukhro E.I., “Konechnye gruppy s pochti regulyarnym avtomorfizmom poryadka chetyre”, Algebra i logika, 45:5 (2006), 575–602 | MR | Zbl

[8] Nechaev A.A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127 | MR

[9] Babbage S., Dodd M., “The MICKEY stream ciphers:”, The eSTREAM Finalists, Springer, 2008, 191–209

[10] Berbain C., Billet O., Canteaut A., Courtois N., Debraize B., Gilbert H., Goubin L., Gouget A., Granboulan L., Lauradoux C., Minier M., Pornin T., Siber H., “DECIM v2”, The eSTREAM Finalists, Springer, 2008, 140–151

[11] De Cannière C. “Trivium: A stream cipher construction inspired by block cipher design principles”, ISC'2006, Lect. Notes Comput. Sci., 4176, 2006, 171–186 | DOI | Zbl

[12] Geffe R.R., “How to protect data with ciphers that really hard to break”, Electronics, 64:1 (1973), 99–101

[13] Günther C.G., “Alternating step generators controlled by de Bruijn sequences”, EUROCRYPT'87, Lect. Notes Comput. Sci., 304, Springer-Verlag, 1988, 5–14 | DOI

[14] Jennings S.M., “Autocorrelation function of the multiplexed sequence”, IKE Proceedings, 131:2 (1984), 169–172 | MR