Generating functions and the Myerson vector in communication networks
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperative games on undirected graphs are considered. The characteristic function is defined in a specialway with due account of the number of links and distances between vertices (players).Animputation procedure is put forward for a tree graph, the resulting imputation is shown to agree with theMyerson vector. For its calculation the use of the generating function is proposed. It is shown that the results obtained may be extended to games with arbitrary graphs.
Keywords: cooperative games, imputation distribution, the Myerson vector.
@article{DM_2014_26_3_a4,
     author = {V. V. Mazalov and L. I. Trukhina},
     title = {Generating functions and the {Myerson} vector in communication networks},
     journal = {Diskretnaya Matematika},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a4/}
}
TY  - JOUR
AU  - V. V. Mazalov
AU  - L. I. Trukhina
TI  - Generating functions and the Myerson vector in communication networks
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 65
EP  - 75
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a4/
LA  - ru
ID  - DM_2014_26_3_a4
ER  - 
%0 Journal Article
%A V. V. Mazalov
%A L. I. Trukhina
%T Generating functions and the Myerson vector in communication networks
%J Diskretnaya Matematika
%D 2014
%P 65-75
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a4/
%G ru
%F DM_2014_26_3_a4
V. V. Mazalov; L. I. Trukhina. Generating functions and the Myerson vector in communication networks. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 65-75. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a4/

[1] Myerson R. B., “Graphs and cooperation in games”, Math. Oper. Res., 2 (1977), 225–229 | DOI | MR | Zbl

[2] Aumann R., Myerson R., “Endogenous formation of links between players and coalitions: an application of the Shapley value”, The Shapley value, Cambridge University Press, 1988, 175–191 | DOI | MR

[3] Jackson M. O., Wolinsky J., “A strategic model of social and economic networks”, J. Econ. Theory, 71:1 (1996), 44–74 | DOI | MR | Zbl

[4] Borm P., Owen G., Tijs S., “On the position value for communication situations”, SIAM J. Discrete Math., 5:3 (1992), 305–320 | DOI | MR | Zbl

[5] Borm P., van den Nouweland A., Tijs S., “Cooperation and communication restrictions: a survey”, Imperfections and Behavior in Economic Organizations, Kluwer Acad. Publ., Boston, 1994, 195–227 | Zbl

[6] Calvo E., Lasaga J., van den Nouweland A., “Values of games with probabilistic graphs”, Math. Social Sci., 37 (1999), 79–95 | DOI | MR | Zbl

[7] Jackson M. O., “Allocation rules for network games”, Games and Econ. Behav., 51:1 (2005), 128–154 | DOI | MR | Zbl

[8] Slikker M., “Link monotonic allocation schemes”, Int. Game Theory Review, 7:4 (2005), 473–489 | DOI | MR | Zbl

[9] Slikker M., Gilles R. P., Norde H., Tijs S., “Directed networks, allocation properties and hierarchy formation”, Math. Social Sci., 49:1 (2005), 55–80 | DOI | MR | Zbl

[10] Talman D., Yamamoto Y., “Average tree solutions and subcore for acyclic graph games”, J. Oper. Res. Soc. Japan, 51:3 (2008), 187–201 | MR

[11] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, Uchebnoe posobie, 1-e izd., Lan, S-Pb., 2010

[12] Jackson M. O., Social and economic networks, Princeton University Press, 2008 | MR | Zbl

[13] Jamison R. E., “Alternating Whitney sums and matchings in trees, part 1”, Discrete Math., 67 (1987), 177–189 | DOI | MR | Zbl