Application of non-associative groupoids to the realization of an open key distribution procedure
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the possibility to use non-associative groupoids in the realization of an open key distribution procedure based on a generalization of the well known Diffie–Hellman algorithm. We prove the existence of non-associative groupoids which are simultaneously power commuting and not power-associative.
Keywords:
open key distribution, Diffie–Hellman algorithm, non-associative groupoids, medial quasigroups, finite dimensional algebras.
@article{DM_2014_26_3_a3,
author = {S. Yu. Katyshev and V. T. Markov and A. A. Nechaev},
title = {Application of non-associative groupoids to the realization of an open key distribution procedure},
journal = {Diskretnaya Matematika},
pages = {45--64},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/}
}
TY - JOUR AU - S. Yu. Katyshev AU - V. T. Markov AU - A. A. Nechaev TI - Application of non-associative groupoids to the realization of an open key distribution procedure JO - Diskretnaya Matematika PY - 2014 SP - 45 EP - 64 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/ LA - ru ID - DM_2014_26_3_a3 ER -
%0 Journal Article %A S. Yu. Katyshev %A V. T. Markov %A A. A. Nechaev %T Application of non-associative groupoids to the realization of an open key distribution procedure %J Diskretnaya Matematika %D 2014 %P 45-64 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/ %G ru %F DM_2014_26_3_a3
S. Yu. Katyshev; V. T. Markov; A. A. Nechaev. Application of non-associative groupoids to the realization of an open key distribution procedure. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/