Application of non-associative groupoids to the realization of an open key distribution procedure
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the possibility to use non-associative groupoids in the realization of an open key distribution procedure based on a generalization of the well known Diffie–Hellman algorithm. We prove the existence of non-associative groupoids which are simultaneously power commuting and not power-associative.
Keywords: open key distribution, Diffie–Hellman algorithm, non-associative groupoids, medial quasigroups, finite dimensional algebras.
@article{DM_2014_26_3_a3,
     author = {S. Yu. Katyshev and V. T. Markov and A. A. Nechaev},
     title = {Application of non-associative groupoids to the realization of an open key distribution procedure},
     journal = {Diskretnaya Matematika},
     pages = {45--64},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/}
}
TY  - JOUR
AU  - S. Yu. Katyshev
AU  - V. T. Markov
AU  - A. A. Nechaev
TI  - Application of non-associative groupoids to the realization of an open key distribution procedure
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 45
EP  - 64
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/
LA  - ru
ID  - DM_2014_26_3_a3
ER  - 
%0 Journal Article
%A S. Yu. Katyshev
%A V. T. Markov
%A A. A. Nechaev
%T Application of non-associative groupoids to the realization of an open key distribution procedure
%J Diskretnaya Matematika
%D 2014
%P 45-64
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/
%G ru
%F DM_2014_26_3_a3
S. Yu. Katyshev; V. T. Markov; A. A. Nechaev. Application of non-associative groupoids to the realization of an open key distribution procedure. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/

[1] Pogorelov B. A., Sachkov V. N. (red.), Slovar kriptograficheskikh terminov, MTsNMO, Moskva, 2006, 94 pp.

[2] Alfërov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, Moskva, 2005, 480 pp.

[3] Belyavskaya G. B., Tabarov A. Kh., “Tozhdestva s podstanovkami, privodyaschie k lineinosti kvazigrupp”, Diskretnaya matematika, 21:1 (2009), 36–51 | DOI | MR | Zbl

[4] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, 2-e izd., MTsNMO, Moskva, 2007, 328 pp.

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moskva, 2003, 414 pp.

[6] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Uchebnoe posobie, Lan, Sankt-Peterburg, 2010, 400 pp.

[7] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, IT-22:6 (1976), 644–654 | DOI | MR | Zbl

[8] Gaudry P., Schost E., “A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm”, Proceedings of Algorithm Number Theory Symposium – ANTS VI, LNCS, 3076, ed. D. A. Buell, Springer-Verlag, 2004, 208–222 | MR | Zbl

[9] Matsuo K., Chao J., Tsujii S., “An improved baby step giant step algorithm for point counting of hyperelliptic curves over Finite Felds”, Proceedings of Algorithm Number Theory Symposium – ANTS V, LNCS, 2369, eds. C. Fiecker, D. Kohel, Springer-Verlag, 2004, 461–474 | MR

[10] Menezes A. J., Okamoto T., Vanstone S. A., “Reducing elliptic curve logarithms to logarithms in a finite field”, IEEE Trans. Inf. Theory, 39:5 (1993), 1639–1646 | DOI | MR | Zbl

[11] Silverman J., The Arithmetic of the Elliptic Curves, Springer, 1986, 513 pp. | MR | Zbl