Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2014_26_3_a3, author = {S. Yu. Katyshev and V. T. Markov and A. A. Nechaev}, title = {Application of non-associative groupoids to the realization of an open key distribution procedure}, journal = {Diskretnaya Matematika}, pages = {45--64}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/} }
TY - JOUR AU - S. Yu. Katyshev AU - V. T. Markov AU - A. A. Nechaev TI - Application of non-associative groupoids to the realization of an open key distribution procedure JO - Diskretnaya Matematika PY - 2014 SP - 45 EP - 64 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/ LA - ru ID - DM_2014_26_3_a3 ER -
%0 Journal Article %A S. Yu. Katyshev %A V. T. Markov %A A. A. Nechaev %T Application of non-associative groupoids to the realization of an open key distribution procedure %J Diskretnaya Matematika %D 2014 %P 45-64 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/ %G ru %F DM_2014_26_3_a3
S. Yu. Katyshev; V. T. Markov; A. A. Nechaev. Application of non-associative groupoids to the realization of an open key distribution procedure. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/
[1] Pogorelov B. A., Sachkov V. N. (red.), Slovar kriptograficheskikh terminov, MTsNMO, Moskva, 2006, 94 pp.
[2] Alfërov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, Moskva, 2005, 480 pp.
[3] Belyavskaya G. B., Tabarov A. Kh., “Tozhdestva s podstanovkami, privodyaschie k lineinosti kvazigrupp”, Diskretnaya matematika, 21:1 (2009), 36–51 | DOI | MR | Zbl
[4] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, 2-e izd., MTsNMO, Moskva, 2007, 328 pp.
[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moskva, 2003, 414 pp.
[6] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Uchebnoe posobie, Lan, Sankt-Peterburg, 2010, 400 pp.
[7] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, IT-22:6 (1976), 644–654 | DOI | MR | Zbl
[8] Gaudry P., Schost E., “A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm”, Proceedings of Algorithm Number Theory Symposium – ANTS VI, LNCS, 3076, ed. D. A. Buell, Springer-Verlag, 2004, 208–222 | MR | Zbl
[9] Matsuo K., Chao J., Tsujii S., “An improved baby step giant step algorithm for point counting of hyperelliptic curves over Finite Felds”, Proceedings of Algorithm Number Theory Symposium – ANTS V, LNCS, 2369, eds. C. Fiecker, D. Kohel, Springer-Verlag, 2004, 461–474 | MR
[10] Menezes A. J., Okamoto T., Vanstone S. A., “Reducing elliptic curve logarithms to logarithms in a finite field”, IEEE Trans. Inf. Theory, 39:5 (1993), 1639–1646 | DOI | MR | Zbl
[11] Silverman J., The Arithmetic of the Elliptic Curves, Springer, 1986, 513 pp. | MR | Zbl