Application of non-associative groupoids to the realization of an open key distribution procedure
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the possibility to use non-associative groupoids in the realization of an open key distribution procedure based on a generalization of the well known Diffie–Hellman algorithm. We prove the existence of non-associative groupoids which are simultaneously power commuting and not power-associative.
Keywords: open key distribution, Diffie–Hellman algorithm, non-associative groupoids, medial quasigroups, finite dimensional algebras.
@article{DM_2014_26_3_a3,
     author = {S. Yu. Katyshev and V. T. Markov and A. A. Nechaev},
     title = {Application of non-associative groupoids to the realization of an open key distribution procedure},
     journal = {Diskretnaya Matematika},
     pages = {45--64},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/}
}
TY  - JOUR
AU  - S. Yu. Katyshev
AU  - V. T. Markov
AU  - A. A. Nechaev
TI  - Application of non-associative groupoids to the realization of an open key distribution procedure
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 45
EP  - 64
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/
LA  - ru
ID  - DM_2014_26_3_a3
ER  - 
%0 Journal Article
%A S. Yu. Katyshev
%A V. T. Markov
%A A. A. Nechaev
%T Application of non-associative groupoids to the realization of an open key distribution procedure
%J Diskretnaya Matematika
%D 2014
%P 45-64
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/
%G ru
%F DM_2014_26_3_a3
S. Yu. Katyshev; V. T. Markov; A. A. Nechaev. Application of non-associative groupoids to the realization of an open key distribution procedure. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 45-64. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a3/